Wei Jin, Hao Hongtao, Zhang Xiaotong, Hu Minzhang, Shen Chongyang. 2021: Accuracy estimation of global tide models using continuous gravity observation data in northern China. Acta Seismologica Sinica, 43(1): 84-99. DOI: 10.11939/jass.20200041
Citation: Wei Jin, Hao Hongtao, Zhang Xiaotong, Hu Minzhang, Shen Chongyang. 2021: Accuracy estimation of global tide models using continuous gravity observation data in northern China. Acta Seismologica Sinica, 43(1): 84-99. DOI: 10.11939/jass.20200041

Accuracy estimation of global tide models using continuous gravity observation data in northern China

More Information
  • Received Date: March 24, 2000
  • Revised Date: June 11, 2020
  • Available Online: March 19, 2021
  • Published Date: January 14, 2021
  • To evaluate the applicability of the global tide models for tide correction in China, this paper firstly assessed the data accuracy of ten gravity observation from 2016 to 2018, and then made the accuracy assessment for the seven global tide model by the evaluation indicators such as the root mean square (RMS), the root sum square (RSS), latitude dependence of the gravimetric amplitude factor, and residual gravity. The result shows that some of the evaluation indicators have achieved or even surpassed the accuracy of the early superconducting gravimeters in ten gravity observations. For example, the RMS of the M2 gravimetric amplitude factor was less than 0.000 70, withthe highest RMS about 0.000 14, and the stability of five main tide waves was less than 0.001 5. As for the ten observed and the seven global tide models, the RSS of DDW-NHi and M2001 models with the Earth’s oblateness influence is only about 0.288×10−8 m/s2, which is smaller than others. Comparison of the tide corrected accuracies by Molodensky, DDW-NHi, M2001, and the observed tide models suggests that residual gravity corrected by DDW-NHi (±0.4×10−8—±1.0×10−8 m/s2) is larger than that by observed one (±0.1×10−8—±0.5×10−8 m/s2) for Wushi gravity observatory with the highest tide accuracy, but still smaller than that by M2001 (±0.7×10−8—±1.4×10−8 m/s2). Furthermore, the residual gravity corrected by DDW-NHi is less about 1×10−8—2×10−8 m/s2 than by the traditional Molodensky model.
  • 李大炜,李建成,金涛勇,胡敏章. 2012. 利用验潮站资料评估全球海潮模型的精度[J]. 大地测量与地球动力学,32(4):106–110.
    Li D W,Li J C,Jin T Y,Hu M Z. 2012. Accuracy estimation of recent global ocean tide models using tide gauge data[J]. Journal of Geodesy and Geodynamics,32(4):106–110 (in Chinese).
    刘子维,李辉,韦进,郝洪涛,吴云龙. 2011. 利用M2潮波振幅因子精密测定gPhone弹簧重力仪的标定因子[J]. 大地测量与地球动力学,31(5):146–150.
    Liu Z W,Li H,Wei J,Hao H T,Wu Y L. 2011. Accurate determination of calibration factor of gPhone spring gravimeters by using M2 tidal wave amplitude factor[J]. Journal of Geodesy and Geodynamics,31(5):146–150 (in Chinese).
    毛慧琴,许厚泽,宋兴黎,陈振邦. 1989. 中国东西重力潮汐剖面[J]. 地球物理学报,32(1):62–69. doi: 10.3321/j.issn:0001-5733.1989.01.006
    Mao H Q,Hus H T,Song X L,Chen Z B. 1989. East-west gravity tidal profile of China[J]. Acta Geophysica Sinica,32(1):62–69 (in Chinese).
    孙和平,许厚泽,徐建桥,柳林涛. 2000. 重力场的潮汐变化观测及其研究[J]. 地球科学进展,15(1):53–57. doi: 10.3321/j.issn:1001-8166.2000.01.008
    Sun H P,Xu H T,Xu J Q,Liu L T. 2000. Observation and study of the tidal variation in gravity field[J]. Advance in Earth Sciences,15(1):53–57 (in Chinese).
    孙和平,陈晓东,刘明,周百力. 2002. LCR-ET20弹簧型潮汐重力仪观测结果的分析和比较[J]. 地震学报,24(5):510–515. doi: 10.3321/j.issn:0253-3782.2002.05.008
    Sun H P,Chen X D,Liu M,Zhou B L. 2002. Analysis and comparison of the tidal gravity observations obtained with LCR-ET20 spring gravimeter[J]. Acta Seismologica Sinica,24(5):510–515 (in Chinese).
    韦进,李辉,刘子维,康开轩,郝洪涛. 2012. 武汉九峰地震台超导重力仪观测分析研究[J]. 地球物理学报,55(6):1894–1902. doi: 10.6038/j.issn.0001-5733.2012.06.010
    Wei J,Li H,Liu Z W,Kang K X,Hao H T. 2012. Observation of superconducting gravimeter at Jiufeng seismic station[J]. Chinese Journal of Geophysics,55(6):1894–1902 (in Chinese).
    魏望生,喻节林. 1995. 中国大陆重力潮汐参数及其特征研究[J]. 地壳形变与地震,15(4):77–85.
    Wei W S,Yu J L. 1995. Study on the gravity tide parameters and their characteristics in the mainland of China[J]. Crustal Deformation and Earthquake,15(4):77–85 (in Chinese).
    郗钦文,侯天航. 1987. 新的引潮位完全展开[J]. 地球物理学报,30(4):349–362.
    Xi Q W,Hou T H. 1987. A new complete development of the tide-generating potential for the epoch J2000.0[J]. Acta Geophysica Sinica,30(4):349–362 (in Chinese).
    张锐,韦进,刘子维,李辉,郝洪涛. 2011. 用SGC053超导重力仪观测资料对gPh058重力仪格值的精密测定[J]. 大地测量与地球动力学,31(5):151–155.
    Zhang R,Wei J,Liu Z W,Li H,Hao H T. 2011. Accurate determination of scale value of gPh058 gravimeter by use of observations with SGC053 superconducting gravimeter[J]. Journal of Geodesy and Geodynamics,31(5):151–155 (in Chinese).
    周江存,徐建桥,孙和平. 2009. 中国大陆精密重力潮汐改正模型[J]. 地球物理学报,52(6):1474–1482. doi: 10.3969/j.issn.0001-5733.2009.06.008
    Zhou J C,Xu J Q,Sun H P. 2009. Accurate correction models for tidal gravity in Chinese continent[J]. Chinese Journal of Geophysics,52(6):1474–1482 (in Chinese).
    Dehant V,Ducarme B. 1987. Comparison between the theoretical and observed tidal gravimetric factors[J]. Phys Earth Planet Inter,49(3/4):192–212.
    Dehant V,Defraigne P,Wahr J M. 1999. Tides for a convective Earth[J]. J Geophys Res,104(B1):1035–1058. doi: 10.1029/1998JB900051
    Ducarme B,Sun H P,Xu J Q. 2002. New investigation of tidal gravity results from the GGP network[J]. Bull Inf Marees Terrestres,136:10761–10776.
    Francis O,Niebauer T M,Sasagawa G,Klopping F,Gschwind J. 1998. Calibration of a superconducting gravimeter by comparison with an absolute gravimeter FG5 in Boulder[J]. Geophys Res Lett,25(7):1075–1078. doi: 10.1029/98GL00712
    Hábel B,Meurers B. 2014. A new tidal analysis of superconducting gravity observations in western and central Europe[J]. Contribut Geophys Geodesy,44(1):1–24. doi: 10.2478/congeo-2014-0001
    Love A E H. 1909. The yielding of the Earth to disturbing forces[J]. Mon Not R astr Soc,69(551):476.
    Mathews P M. 2001. Love numbers and gravimetric factor for diurnal tides[J]. J Geodetic Soc Jpn,46(4):231–236.
    Melchior P,de Becker M. 1983. A discussion of world-wide measurements of tidal gravity with respect to oceanic interactions,lithosphere heterogeneities,Earth’s flattening and inertial forces[J]. Phys Earth Planet Inter,31(1):27–53. doi: 10.1016/0031-9201(83)90064-X
    Melchior P. 1994. A new data bank for tidal gravity measurements (DB 92)[J]. Phys Earth Planet Inter,82(2):125–155. doi: 10.1016/0031-9201(94)90085-X
    Molodensky M S. 1961. The theory of nutation and diurnal Earth tides[J]. Communs Obs Roy Belg,288:25–56.
    Tamura Y. 1987. A harmonic development of the tide-generating potential[J]. Bull Inf Marees Terrestres,99:6817–6855.
    Wahr J M. 1981a. Body tides on an elliptical,rotating,elastic and oceanless earth[J]. Geophys J R astr Soc,64(3):677–703. doi: 10.1111/j.1365-246X.1981.tb02690.x
    Wahr J M. 1981b. A normal mode expansion for the forced response of a rotating earth[J]. Geophys J R astr Soc,64(3):651–675. doi: 10.1111/j.1365-246X.1981.tb02689.x
    Wahr J M. 1981c. The forced nutations of an elliptical,rotating,elastic and oceanless earth[J]. Geophys J R astr Soc,64(3):705–727. doi: 10.1111/j.1365-246X.1981.tb02691.x
    Xu J Q,Sun H P,Ducarme B. 2004. A global experimental model for gravity tides of the Earth[J]. J Geodyn,38(3/5):293–306.
  • Related Articles

  • Cited by

    Periodical cited type(1)

    1. 刘嘉栋,吴庆举,强正阳,朱敏. 利用接收函数研究四川威远地区地壳结构特征. 地球物理学报. 2024(07): 2637-2653 .

    Other cited types(0)

Catalog

    Article views (938) PDF downloads (74) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return