Qiu Z W,Yu Y,Du Y,Zhou Z H. 2021. Numerical analysis of effect of reverse fault dislocation on tunnel engineering. Acta Seismologica Sinica43(2):237−244. DOI: 10.11939/jass.20200049
Citation: Qiu Z W,Yu Y,Du Y,Zhou Z H. 2021. Numerical analysis of effect of reverse fault dislocation on tunnel engineering. Acta Seismologica Sinica43(2):237−244. DOI: 10.11939/jass.20200049

Numerical analysis of effect of reverse fault dislocation on tunnel engineering

More Information
  • Received Date: April 02, 2020
  • Revised Date: May 26, 2020
  • Available Online: June 17, 2021
  • Published Date: March 14, 2021
  • The permanent deformation of surrounding rock caused by fault dislocation will do harm to tunnel structure. In order to study the deformation and stress characteristics of tunnel under reverse fault dislocation, this paper takes Yuelongmen tunnel project of Chengdu-Lanzhou railway crossing Beichuan-Yingxiu fault as the research object. Using Abaqus software, the numerical model of tunnel structure crossing reverse fault is established, parameters are selected and boundary conditions are set. The stress and deformation of tunnel lining structure under reverse fault displacement are simulated and analyzed. The results show that the S-shaped bending deformation of the tunnel lining structure is caused by the reverse fault dislocation, and the longitudinal stress of the lining structure increases with the increase of fault dislocation, which shows that the tensile and compressive stress distribution at the top and bottom of the lining is opposite. The tensile and compressive stresses at the top of the lining are greater than those at the bottom, and the compressive stresses at the top and bottom of the lining are greater than the tensile stresses.
  • 陈熹. 2017. 活动断层错动下跨断层隧道动力响应及破坏机理研究[D]. 成都: 西南交通大学: 10–19.
    Chen X. 2017. Study on Dynamic Response and Failure Mechanism of the Crossing-Fault Tunnel Under the Action of Active Fault[D]. Chengdu: Southwest Jiaotong University: 10–19 (in Chinese).
    胡辉. 2013. 穿越活动断层的隧道减震结构研究[D]. 成都: 西南交通大学: 55–57.
    Hu H. 2013. Study on Aseismic Structure for Tunnel Passing Through Active Fault[D]. Chengdu: Southwest Jiaotong University: 55–57 (in Chinese).
    焦鹏飞,来弘鹏. 2019. 不同倾角逆断层错动对隧道结构影响理论分析[J]. 土木工程学报,52(2):106–117.
    Jiao P F,Lai H P. 2019. Theoretical analysis on the influence of different dip angle reverse faults' dislocation on tunnel structure[J]. China Civil Engineering Journal,52(2):106–117 (in Chinese).
    邵润萌. 2011. 断层错动作用下隧道工程损伤及岩土失效扩展机理研究[D]. 北京: 北京交通大学: 13–28.
    Shao R M. 2011. Study on the Mechanism of Tunnel Damage and Geotechnical Failure Propagation Due to Fault Rupture[D]. Beijing: Beijing Jiaotong University: 13–28 (in Chinese).
    孙飞,张志强,易志伟. 2019. 正断层黏滑错动对地铁隧道结构影响的模型试验研究[J]. 岩土力学,40(8):3037–3044.
    Sun F,Zhang Z Q,Yi Z W. 2019. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure[J]. Rock and Soil Mechanics,40(8):3037–3044 (in Chinese).
    熊炜,范文,彭建兵,邓龙胜,闫芙蓉. 2010. 正断层活动对公路山岭隧道工程影响的数值分析[J]. 岩石力学与工程学报,29(增刊):2845–2852.
    Xiong W,Fan W,Peng J B,Deng L S,Yan F R. 2010. Numerical analysis of effect of normal fault activity on road mountain tunnel project[J]. Chinese Journal of Rock Mechanics and Engineering,29(S1):2845–2852 (in Chinese).
    张丽芬,姚运生. 2013. 震源动力学破裂过程数值模拟研究[J]. 地震学报,35(4):604–615. doi: 10.3969/j.issn.0253-3782.2013.04.014
    Zhang L F,Yao Y S. 2013. Review on numerical simulation of dynamic rupture process of earthquake source[J]. Acta Seismologica Sinica,35(4):604–615 (in Chinese).
    赵宝平. 2018. 逆断层错动对公路隧道影响研究[J]. 公路,63(11):329–332.
    Zhao B P. 2018. Study on the influence of reverse fault dislocation on highway tunnel[J]. Highway,63(11):329–332 (in Chinese).
    Kontogianni V A,Stiros S C. 2003. Earthquakes and seismic faulting:Effects on tunnels[J]. Turkish J Earth Sci,12(1):153–156.
  • Cited by

    Periodical cited type(12)

    1. 杨敬松,廖府,李智涛,卢泽葳. 一种基于Delaunay三角剖分的天然地震波初至实时拾取算法. 地球物理学进展. 2024(05): 1788-1799 .
    2. 邱磊,李彩华. STA/LTA方法拾取天然地震波初至及其改进分析. 地球物理学进展. 2023(04): 1497-1506 .
    3. 裴玮来,周仕勇. 基于最大顺序统计量的P波初动极性自动读取方法的小震震源机制反演及在云南小江地区的应用研究. 地球物理学报. 2022(03): 992-1005 .
    4. 颜利君,庞瑶,唐淋. 四川地震编目自动处理系统产出结果分析. 四川地震. 2022(01): 20-23 .
    5. 张珂,张帆,张晖,王鑫,郝美仙,翟浩. 内蒙古敖汉旗震群的微震匹配定位及其发震断层研究. 地震学报. 2022(04): 594-607 . 本站查看
    6. 刘磊,王怀富,王志峰. 基于长短时窗比的地震检测方法应用. 电声技术. 2022(09): 93-96 .
    7. 金星,林彬华,蔡辉腾,韦永祥,李军,郭阳,于伟恒. 基于气枪信号偏振特征的震相自动判别研究. 地球物理学进展. 2021(01): 8-18 .
    8. 王旭林,李玉海,王鹏,王晓阳,吕明慧. 基于改进Delaunay三角剖分算法的微地震数据SRV估算与应用. 地球物理学进展. 2021(02): 689-695 .
    9. 钟媛,胡星星,滕云田,陈波,何朝博,沈晓宇. STA/LTA算法在MEMS烈度计中的适用性分析. 地震研究. 2021(02): 208-215 .
    10. 周本伟,范莉苹,张龙,李珀任,房立华. 利用卷积神经网络检测地震的方法与优化. 地震学报. 2020(06): 669-683 . 本站查看
    11. Haichao Ma,Risheng Chu,Minhan Sheng,Ziye Yu. Template matching for simple waveforms with low signalto-noise ratio and its application to icequake detection. Earthquake Science. 2020(Z1): 256-263 .
    12. XU Zhen,WANG Tao,XU Shanhui,WANG Baoshan,FENG Xuping,SHI Jing,YANG Minghan. Active Source Seismic Identification and Automatic Picking of the P-wave First Arrival Using a Convolutional Neural Network. Earthquake Research in China. 2019(02): 288-304 .

    Other cited types(10)

Catalog

    Article views (1023) PDF downloads (74) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return