Zhou J,Li X J,Li Y Q,Kang C C. 2021. Comparative analysis and transformation relations between China and the US site classification systems in building seismic code provisions. Acta Seismologica Sinica43(4):521−532. DOI: 10.11939/jass.20200164
Citation: Zhou J,Li X J,Li Y Q,Kang C C. 2021. Comparative analysis and transformation relations between China and the US site classification systems in building seismic code provisions. Acta Seismologica Sinica43(4):521−532. DOI: 10.11939/jass.20200164

Comparative analysis and transformation relations between China and the US site classification systems in building seismic code provisions

More Information
  • Received Date: September 24, 2020
  • Revised Date: April 14, 2021
  • Available Online: September 07, 2021
  • Published Date: July 14, 2021
  • In this study, based on 6 824 borehole profiles, we subdivide the site classes in GB 50011-2010 Code for Seismic Design of Buildings (Chinese code) into more homogeneous sub-classes by different values of the equivalent shear wave velocity (vSe) and site overlaying layers (D), and quantitatively analysis the effect of each parameters in the site classification schedule in the code. We build the relation between these sub-classes of the China code and classes of the US seismic design code National Earthquake Hazards Reduction Program Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, carry out comparative analysis on two classification schedules, and build the probabilistic transformation relations for interconverting China site classes and the US site classes. The results show that: It is not appropriate to take the average shear wave velocity to a depth of 20 m (vS20) as the proxy for vSe in site classification of China code; for China site class Ⅱ and Ⅲ, different sub-classes have significantly different corresponding relations with the US site classes; the D effectively distinguishes the sites those velocity structures are similar at shallow layers while different at deeper layers; the main part of China site class Ⅱ and Ⅲ are both corresponding to the US site class D, the China site class Ⅱ leans to the US site class C, while the China site class Ⅲ leans to the US site class E; China site class Ⅳ is corresponding to the US site class E; most of the US site class C and D are both corresponding to China site class Ⅱ.It implies that the range of China site class Ⅱ is relatively vast.
  • 地理国情监测云平台. 2015. 全国土地利用数据产品[DB/OL]. [2020-06-16]. http://www.dsac.cn/.
    Geographical Information Monitoring Cloud Platform. 2015. China land use data[DB/OL]. [2020-06-16]. http://www.dsac.cn/ (in Chinese).
    李广军,赵艳,王文仲,张同伟. 2009. 场地条件对设计反应谱最大值的影响[J]. 工程抗震与加固改造,31(1):114–118. doi: 10.3969/j.issn.1002-8412.2009.01.020
    Li G J,Zhao Y,Wang W Z,Zhang T W. 2009. Analysis to the effect of site condition to the maximum of design response spectra[J]. Earthquake Resistant Engineering and Retrofitting,31(1):114–118 (in Chinese).
    李小军. 2013. 地震动参数区划图场地条件影响调整[J]. 岩土工程学报,35(增刊):21–29.
    Li X J. 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Journal of Geotechnical Engineering,35(S2):21–29 (in Chinese).
    李小军,彭青. 2001. 不同类别场地地震动参数的计算分析[J]. 地震工程与工程振动,21(1):29–36. doi: 10.3969/j.issn.1000-1301.2001.01.005
    Li X J,Peng Q. 2001. Calculation and analysis of earthquake ground motion parameters for different site categories[J]. Earthquake Engineering and Engineering Vibration,21(1):29–36 (in Chinese).
    刘培玄,刘红帅,赵纪生,刘艳琼. 2015. 基于KiK-net台站的中美场地类别对比分析[J]. 地震工程与工程振动,35(6):42–46.
    Liu P X,Liu H S,Zhao J S,Liu Y Q. 2015. Comparison of site classification between Chinese and American seismic codes based on data of Japanese Kik-net station[J]. Earthquake Engineering and Engineering Dynamics,35(6):42–46 (in Chinese).
    吕红山,赵凤新. 2007. 适用于中国场地分类的地震动反应谱放大系数[J]. 地震学报,29(1):67–76. doi: 10.3321/j.issn:0253-3782.2007.01.008
    Lü H S,Zhao F X. 2007. Site coefficients suitable to china site category[J]. Acta Seismologica Sinica,29(1):67–76 (in Chinese).
    苏经宇,李虹. 1996. 场地划分规范方法的比较分析[J]. 工程抗震,(2):43–46.
    Su J Y,Li H. 1996. Comparison and analysis of site classification methods in seismic design codes provisions[J]. Seismic Fortification Engineering,(2):43–46 (in Chinese).
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2005. GB17741—2005 工程场地地震安全性评价[S]. 北京: 中国标准出版社: 5.
    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. 2005. GB 17741—2005 Evaluation of Seismic Safety for Engineering Sites[S]. Beijing: Standards Press of China: 5 (in Chinese).
    中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 2009. GB 50021—2001岩土工程勘察规范[S]. 北京: 中国建筑工业出版社: 113.
    Ministry of Construction of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2009. GB50021—2001 Code for Investigation of Geotechnical Engineering [S]. Beijing: China Architecture & Building Press: 113 (in Chinese).
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2016. GB50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 18–20.
    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. 2016. GB50011—2010 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press: 18–20 (in Chinese).
    周锡元, 王广军, 苏经宇. 1990. 场地・地基・设计地震[M]. 北京: 地震出版社: 22–25.
    Zhou X Y, Wang G J, Su J Y. 1990. Site, Foundation, and Design Ground Motion[M]. Beijing: Seismological Press: 22–25(in Chinese).
    周锡元,樊水荣,苏经宇. 1999. 场地分类和设计反应谱的特征周期:《建筑抗震设计规范》修订简介(八)[J]. 工程抗震,(4):3–8.
    Zhou X Y,Fan S Y,Su J Y. 1999. Site classification and characteristic period of the response spectrum:Introduction of the revised provisions for GB50011—1998Code for Seismic Design of Buildings (8th)[J]. Seismic Fortification Engineering,(4):3–8 (in Chinese).
    American Society of Civil Engineers. 2013. Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10)[M]. Youngstown, Ohio: American Society of Civil Engineers: 203–204.
    Boore D M. 2004. Estimating VS30(or NEHRP site classes)from shallow velocity models(depths<30 m)[J]. Bull Seismol Soc Am,94(2):591–597. doi: 10.1785/0120030105
    Boore D M,Thompson E M,Cadet H. 2011. Regional correlations of VS30 and velocities averaged over depths less than and greater than 30 m[J]. Bull Seismol Soc Am,101(6):3046–3059. doi: 10.1785/0120110071
    Borcherdt R D,Glassmoyer G. 1992. On the characteristics of local geology and their influence on ground motions generated by the Loma Prieta earthquake in the San Francisco Bay region,California[J]. Bull Seismol Soc Am,82(2):603–641.
    Borcherdt R D. 1994. Estimates of site-dependent response spectra for design:Methodology and justification[J]. Earthq Spectra,10(4):617–653. doi: 10.1193/1.1585791
    Borcherdt R D. 2002. Empirical evidence for site coefficients in building code provisions[J]. Earthq Spectra,18(2):189–217. doi: 10.1193/1.1486243
    Cadet H,Dural A M. 2009. A shear wave velocity study based on the Kik-net borehole data:A short note[J]. Seismol Res Lett,80(3):440–445. doi: 10.1785/gssrl.80.3.440
    Castellaro S,Mulargia F,Rossi P L. 2008. VS30:Proxy for seismic amplification?[J]. Seismol Res Lett,79(4):540–543. doi: 10.1785/gssrl.79.4.540
    Dai Z J,Li X J,Hou C. 2013. A shear-wave velocity model for VS30 estimation based on a conditional independence property[J]. Bull Seismol Soc Am,103(6):3354–3361. doi: 10.1785/0120130025
    Dobry R,Borcherdt R D,Crouse C B,Idriss I M,Joyner W B,Martin G R,Power M S,Rinne E E,Seed R B. 2000. New site coeffi-cients and site classification system used in recent building seismic code provisions[J]. Earthq Spectra,16(1):41–67. doi: 10.1193/1.1586082
    Lee V W,Trifunac M D. 2010. Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification? [J]. Soil Dyn Earthq Eng,30(11):1250–1258. doi: 10.1016/j.soildyn.2010.05.007
    Moss R E S. 2008. Quantifying measurement uncertainty of thirty-meter shear-wave velocity[J]. Bull Seismol Soc Am,98(3):1399–1411. doi: 10.1785/0120070101
    National Earthquake Hazards Reduction Program. 2015. Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (2015 edition)[S]. Washington D C: Building Seismic Safety Council: 14.
    Ohta Y,Goto N. 1978. Empirical shear wave velocity equations in terms of characteristic soil indexes[J]. Earthq Eng Struct Dyn,6(2):167–187. doi: 10.1002/eqe.4290060205
    Scasserra G,Stewart J P,Kayen R E,Lanzo G. 2009. Database for earthquake strong motion studies in Italy[J]. J Earthq Eng,13(6):852–881. doi: 10.1080/13632460802566997
    Seyhan E,Stewart J P. 2014. Semi-Empirical nonlinear site amplification from NGA-West2 data and simulations[J]. Earthq Spectra,30(3):1241–1256. doi: 10.1193/063013EQS181M
    Thompson E M,Baise L G,Kayen R E. 2007. Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments[J]. Soil Dyn Earthq Eng,27(2):144–152. doi: 10.1016/j.soildyn.2006.05.004
    The European Committee for Standardization. 2004. Eurocode 8: Design of Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings[S]. Brussels: European Committee for Standardization: 10–12.
    Wang H Y,Wang S Y. 2015. A new method for estimating VS30 from a shallow shear-wave velocity profile (depth<30 m)[J]. Bull Seismol Soc Am,105(3):1359–1370. doi: 10.1785/0120140103
    Wills C J,Petersen M D,Bryant W A,Reichle M,Saucedo G J,Tan S,Taylor G C,Treiman J A. 2000. A site-conditions map for California based on geology and shear-wave velocity[J]. Bull Seismol Soc Am,90(6B):S187–S208. doi: 10.1785/0120000503
    Zhou J,Li X J,Dai Z J,Chen K. 2021. Parametrical model for estimating VS30 from shallow borehole profiles using a database for China[J]. Bull Seismol Soc Am,111(3):1199–1220. doi: 10.1785/0120200178
  • Related Articles

Catalog

    Article views (1128) PDF downloads (208) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return