Chen F,Xue M. 2021. Impact of the tsunami excited by the 2011 MW9.0 Japan earthquake on seismic ambient noises. Acta Seismologica Sinica43(3):321−337. DOI: 10.11939/jass.20200176
Citation: Chen F,Xue M. 2021. Impact of the tsunami excited by the 2011 MW9.0 Japan earthquake on seismic ambient noises. Acta Seismologica Sinica43(3):321−337. DOI: 10.11939/jass.20200176

Impact of the tsunami excited by the 2011 MW9.0 Japan earthquake on seismic ambient noises

More Information
  • Received Date: October 22, 2020
  • Revised Date: March 07, 2021
  • Available Online: June 16, 2021
  • Published Date: May 14, 2021
  • The MW9.0 earthquake on March 11, 2011 occurred in the northeastern sea of Japan triggered a catastrophic tsunami, which had significant influences on the seismic ambient noises with ocean-lithosphere coupling. This study uses the continuous data recorded by seismic stations along the coast and inland of North America, combined with the seafloor pressure data recorded by the DART system nearby, as well as the predicted tidal data to analyze the impact of this tsunami on the seismic ambient noises by using time-frequency analysis and polarization analysis methods. The results show that this tsunami had little impact on the high-frequency noise (1.3−1.5 Hz) and short-period double-frequency microseisms (0.18−0.4 Hz), while it significantly enhanced the amplitudes of long-period double-frequency microseisms (0.1−0.15 Hz), single-frequency microseisms (0.05−0.08 Hz), as well as the Earth’s background free oscillations (0.004−0.007 Hz). Moreover, as the frequency of the ambient noise decreases, the amplitude enhancement becomes more pronounced and lasts longer. When the tsunami reaches the shore, it has an impact on the ambient noise of coastal stations nearby for all three frequency-bands of Earth’s background free oscillations, microseisms, and high-frequency noise and becomes the main energy source of seismic ambient noises at all three frequency bands. And the position of the dominant tsunami sources changes with time. All above-mentioned suggests that the influence of tsunami on seismic ambient noise is related to the propagation characteristics of tsunami, that is, due to the influence of water depth, reflections and diffractions of seafloor and inshore topography, the energy accumulation area changes with time, and the energy does not propagate uniformly to the coast, resulting in the changes of dominant polarization direction of seismic ambient noise in different frequency bands with time. By cross-disciplines of seismology and oceanography, this study is of significance for advancing studies on the coupling mechanism of ocean-lithosphere, identifying the characteristics of tsunami waves from the perspective of seismology, as well as exploring new tsunami warning mechanisms.
  • 叶琳,于福江,吴玮. 2005. 我国海啸灾害及预警现状与建议[J]. 海洋预报,22(增刊1):147–157. doi: 10.3969/j.issn.1003-0239.2005.z1.021
    Ye L,Yu F J,Wu W. 2005. The disaster and warning of tsunami in China and the suggestion in future[J]. Marine Forecasts,22(Z1):147–157 (in Chinese). doi: 10.3969/j.issn.1003-0239.2005.z1.021(inChinese)
    Benioff H,Harrison J C,LaCoste L,Munk W H,Slichter L B. 1959. Searching for the Earth’s free oscillations[J]. J Geophys Res,64(9):1334–1337. doi: 10.1029/JZ064i009p01334
    Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x
    Bromirski P D,Duennebier F K,Stephen R A. 2005. Mid-ocean microseisms[J]. Geochem Geophys Geosyst,6(4):Q04009. doi: 10.1029/2004gc000768
    Bromirski P D. 2009. Earth vibrations[J]. Science,324(5930):1026–1027.
    Bromirski P D,Gerstoft P. 2009. Dominant source regions of the Earth’s “hum” are coastal[J]. Geophys Res Lett,36(13):L13303. doi: 10.1029/2009gl038903
    Cicconi G,Dagnino I,Eva C. 1983. Comparative spectra of microseisms and swell in the Ligurian Sea[J]. Dev Solid Earth Geophys,15:237–241. doi: 10.1016/B978-0-444-99662-6.50051-4
    Ekström G. 2001. Time domain analysis of Earth’s long-period background seismic radiation[J]. J Geophys Res:Solid Earth,106(B11):26483–26493. doi: 10.1029/2000JB000086
    Fine I V,Kulikov E A,Cherniawsky J Y. 2013. Japan’s 2011 tsunami:Characteristics of wave propagation from observations and numerical modelling[J]. Pure Appl Geophys,170(6/7/8):1295–1307.
    Fujii Y,Satake K. 2007. Tsunami source of the 2004 Sumatra-Andaman earthquake inferred from tide gauge and satellite data[J]. Bull Seismol Soc Am,97(1A):S192–S207. doi: 10.1785/0120050613
    Fujii Y,Satake K. 2008. Tsunami sources of the November 2006 and January 2007 great Kuril earthquakes[J]. Bull Seismol Soc Am,98(3):1559–1571. doi: 10.1785/0120070221
    Fujii Y,Satake K,Sakai S,Shinohara M,Kanazawa T. 2011. Tsunami source of the 2011 off the Pacific coast of Tohoku earthquake[J]. Earth Planets Space,63(7):815–820.
    Fukao Y,Nishida K,Suda N,Nawa K,Kobayashi N. 2002. A theory of the Earth’s background free oscillations[J]. J Geophys Res:Solid Earth,107(B9):2206. doi: 10.1029/2001jb000153
    Gerstoft P,Shearer P M,Harmon N,Zhang J. 2008. Global P,PP,and PKP wave microseisms observed from distant storms[J]. Geophys Res Lett,35(23):L23306. doi: 10.1029/2008gl036111
    Gilbert F,MacDonald G. 1959. Free oscillations of the Earth[J]. J Geophys Res,64:1103–1104.
    Hasselmann K. 1963. A statistical analysis of the generation of microseisms[J]. Rev Geophys,1(2):177–210. doi: 10.1029/RG001i002p00177
    Heidarzadeh M,Satake K. 2013. Waveform and spectral analyses of the 2011 Japan tsunami records on tide gauge and DART stations across the Pacific Ocean[J]. Pure Appl Geophys,170(6/7/8):1275–1293. doi: 10.1007/s00024-012-0558-5
    Kobayashi N,Nishida K. 1998. Continuous excitation of planetary free oscillations by atmospheric disturbances[J]. Nature,395(6700):357–360. doi: 10.1038/26427
    Koper K D,Burlacu R. 2015. The fine structure of double-frequency microseisms recorded by seismometers in North America[J]. J Geophys Res:Solid Earth,120(3):1677–1691. doi: 10.1002/2014jb011820
    Lacoss R T,Kelly E J,Toksöz M N. 1969. Estimation of seismic noise structure using arrays[J]. Geophysics,34(1):21–38. doi: 10.1190/1.1439995
    Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans R Soc Lond A:Math Phys Eng Sci,243(857):1–35. doi: 10.1098/rsta.1950.0012
    Longuet-Higgins M S,Ursell F. 1948. Sea waves and microseisms[J]. Nature,162(4122):700. doi: 10.1038/162700a0
    McCreery C S,Duennebier F K,Sutton G H. 1993. Correlation of deep ocean noise (0.4−30 Hz) with wind,and the Holu Spectrum:A worldwide constant[J]. J Acoust Soc Am,93(5):2639–2648. doi: 10.1121/1.405838
    Mungov G,Eblé M,Bouchard R. 2013. DART® tsunameter retrospective and real-time data:A reflection on 10 years of processing in support of tsunami research and operations[J]. Pure Appl Geophys,170(9/10):1369–1384.
    Munk W H. 1963. Some comments regarding diffusion and absorption of tsunamis[C]//Proceedings of the Tsunami Meeting, X Pacific Science Congress. Paris: IUGG Monogr: 31–41.
    Nishida K,Kobayashi N. 1999. Statistical features of Earth’s continuous free oscillations[J]. J Geophys Res:Solid Earth,104(B12):28741–28750. doi: 10.1029/1999jb900286
    Nishida K,Kobayashi N,Fukao Y. 2000. Resonant oscillations between the solid earth and the atmosphere[J]. Science,287(5461):2244–2246. doi: 10.1126/science.287.5461.2244
    Obrebski M J,Ardhuin F,Stutzmann E,Schimmel M. 2012. How moderate sea states can generate loud seismic noise in the deep ocean[J]. Geophys Res Lett,39(11):L11601.
    Pugh D, Woodworth P. 2014. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes[M]. Cambridge: Cambridge University Press: 60–96.
    Rhie J,Romanowicz B. 2004. Excitation of Earth’s continuous free oscillations by atmosphere-ocean-seafloor coupling[J]. Nature,431(7008):552–556. doi: 10.1038/nature02942
    Rhie J,Romanowicz B. 2006. A study of the relation between ocean storms and the Earth’s hum[J]. Geochem Geophys Geosyst,7(10):Q10004. doi: 10.1029/2006gc001274
    Satake K,Fujii Y,Harada T,Namegaya Y. 2013. Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data[J]. Bull Seismol Soc Am,103(2B):1473–1492. doi: 10.1785/0120120122
    Shapiro S L,Carlson L E,Astin J A,Freedman B. 2006. Mechanisms of mindfulness[J]. J Clin Psychol,62(3):373–386. doi: 10.1002/jclp.20237
    Shevchenko G,Ivelskaya T,Loskutov A. 2014. Characteristics of the 2011 great Tohoku tsunami on the Russian far east coast:Deep-water and coastal observations[J]. Pure Appl Geophys,171(12):3329–3350. doi: 10.1007/s00024-013-0727-1
    Stehly L,Campillo M,Shapiro N M. 2006. A study of the seismic noise from its long-range correlation properties[J]. J Geophys Res:Solid Earth,111(B10):B10306. doi: 10.1029/2005jb004237
    Suda N,Nawa K,Fukao Y. 1998. Earth’s background free oscillations[J]. Science,279(5359):2089–2091. doi: 10.1126/science.279.5359.2089
    Sun T H Z,Xue M,Le K P,Zhang Y W,Xu H P. 2013. Signatures of ocean storms on seismic records in South China Sea and East China Sea[J]. Mar Geophys Res,34(3/4):431–448. doi: 10.1007/s11001-013-9204-6
    Tanimoto T,Um J. 1999. Cause of continuous oscillations of the Earth[J]. J Geophys Res:Solid Earth,104(B12):28723–28739. doi: 10.1029/1999jb900252
    Tanimoto T. 2005. The oceanic excitation hypothesis for the continuous oscillations of the Earth[J]. Geophys J Int,160(1):276–288. doi: 10.1111/j.1365-246X.2004.02484.x
    Tanimoto T,Ishimaru S,Alvizuri C. 2006. Seasonality in particle motion of microseisms[J]. Geophys J Int,166(1):253–266. doi: 10.1111/j.1365-246X.2006.02931.x
    Tanimoto T. 2007. Excitation of microseisms[J]. Geophys Res Lett,34(5):L05308. doi: 10.1029/2006gl029046
    Titov V,Rabinovich A B,Mofjeld H O,Thomson R E,Gonzalez F I. 2005. The global reach of the 26 December 2004 Sumatra tsunami[J]. Science,309(5743):2045–2048. doi: 10.1126/science.1114576
    Toksöz M N,Lacoss R T. 1968. Microseisms:Mode structure and sources[J]. Science,159(3817):872–873. doi: 10.1126/science.159.3817.872
    USGS. 2020. Search earthquake catalog[EB/OL]. [2020-03-12]. https://earthquake.usgs.gov/earthquakes/search/.
    Watada S, Masters G. 2001. Oceanic excitation of the continuous oscillations of the Earth[J]. Eos Trans AGU, 82: SS2A-062082.
    Webb S C. 2007. The Earth’s ‘hum’ is driven by ocean waves over the continental shelves[J]. Nature,445(7129):754–756. doi: 10.1038/nature05536
    Xiao H,Xue M,Yang T,Liu C G,Hua Q F,Xia S H,Huang H B,Le B M,Yu Y Q,Huo D,Pan M H,Li L,Gao J Y. 2018. The characteristics of microseisms in South China Sea:Results from a combined data set of OBSs,broadband land seismic stations,and a global wave height model[J]. J Geophys Res:Solid Earth,123(5):3923–3942. doi: 10.1029/2017jb015291
    Ye L L,Lay T,Kanamori H. 2013. Ground shaking and seismic source spectra for large earthquakes around the megathrust fault offshore of northeastern Honshu,Japan[J]. Bull Seismol Soc Am,103(2B):1221–1241. doi: 10.1785/0120120115
    Zhang J,Gerstoft P,Shearer P M. 2009. High-frequency P-wave seismic noise driven by ocean winds[J]. Geophys Res Lett,36(9):L09302. doi: 10.1029/2009gl037761
    Zhang J,Gerstoft P,Bromirski P D. 2010a. Pelagic and coastal sources of P-wave microseisms:Generation under tropical cyclones[J]. Geophys Res Lett,37(15):L15301. doi: 10.1029/2010gl044288
    Zhang J,Gerstoft P,Shearer P M. 2010b. Resolving P-wave travel-time anomalies using seismic array observations of oceanic storms[J]. Earth Planet Sci Lett,292(3/4):419–427. doi: 10.1016/j.jpgl.2010.02.014
  • Cited by

    Periodical cited type(8)

    1. 张丽琼,高曙德,李娜. 积石山M_S6.2地震前地电场异常特征. 大地测量与地球动力学. 2025(04): 367-372 .
    2. 周瀚琳,赵玉红,徐恺晖,李国英. 格尔木地磁观测数据与中强地震关系研究. 高原地震. 2024(01): 39-45 .
    3. 刘海洋,饶文,徐衍刚,艾萨·伊斯马伊力. 2024年1月23日乌什M_S7.1地震前新疆地电优势方位角变化特征分析. 内陆地震. 2024(02): 182-193 .
    4. 孙召华,李军辉,李君,孙亮亮,张洋,张钧琪. 2015年安徽阜阳4.3级地震前地电场方位角异常分析. 中国地震. 2024(03): 690-699 .
    5. 郭雨帆,杜晓辉,董磊,汤兰荣,赵爱平,王甘娇. 基于张衡一号卫星监测的2021年青海玛多7.4级地震前电离层效应. 地震. 2023(02): 85-102 .
    6. 席继楼,赵家骝,高尚华,王晓蕾,李国佑,孟凡博. 长周期地电场变化特征及机理——以都兰地震台为例. 地震地质. 2023(05): 1092-1111 .
    7. 赵玉红,李霞,冯丽丽,刘磊,张朋涛,卢嘉沁,孙玺皓. 2次门源地震前地电场优势方位角异常特征研究. 地震地磁观测与研究. 2023(S1): 199-202 .
    8. 格根,张帆,陈立峰,梁沙沙,王磊. 内蒙古乌加河地电场异常特征研究. 地震地磁观测与研究. 2023(S1): 226-228 .

    Other cited types(0)

Catalog

    Article views (851) PDF downloads (64) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return