Processing math: 100%
Jia L,Xie J J,Li X J,Wen Z P,Chen W B,Zhou J. 2021. Empirical prediction models of time-averaged shear wave velocity vS20 and vS30 in Sichuan and Yunnan areas. Acta Seismologica Sinica43(5):628−642. DOI: 10.11939/jass.20200193
Citation: Jia L,Xie J J,Li X J,Wen Z P,Chen W B,Zhou J. 2021. Empirical prediction models of time-averaged shear wave velocity vS20 and vS30 in Sichuan and Yunnan areas. Acta Seismologica Sinica43(5):628−642. DOI: 10.11939/jass.20200193

Empirical prediction models of time-averaged shear wave velocity vS20 and vS30 in Sichuan and Yunnan areas

More Information
  • Received Date: November 25, 2020
  • Revised Date: January 20, 2021
  • Available Online: November 10, 2021
  • Published Date: September 29, 2021
  • The time-averaged shear wave velocity of overburden soil is an important parameter for site classification and reflecting site effects on ground motion, which is widely used in earthquake ground motion prediction models. Using the lithology and wave velocity profile data of 973 boreholes in Sichuan and Yunnan, we study the regional prediction model of the average shear wave velocity. Based on the bottom constant velocity (BCV) model, log-linear model and Markov independent model, the empirical prediction models of vS20 and vS30 in this region were established. The results show that, the BCV method has the largest prediction error. When the depth of the shear wave velocity is less than 10 m, this method will significantly underestimate the average wave velocity of the actual site. Based on the log-linear model of Boore method, we establish an empirical prediction model. By comparison, we find that the average wave speed prediction results in Sichuan and Yunnan are close to those in Beijing and California, and significantly lower than those in Japan. Through the comparative analysis of prediction error of three different extrapolation methods, we find that the prediction results based on Markov independence model have the smallest error at different depths, and it is preferred to use this method to set up regional prediction model.
  • 陈国兴,丁杰发,方怡,彭艳菊,李小军. 2020. 场地类别分类方案研究[J]. 岩土力学,41(11):3509–3522.
    Chen G X,Ding J F,Fang Y,Peng Y J,Li X J. 2020. Investigation of seismic site classification scheme[J]. Rock and Soil Mechanics,41(11):3509–3522 (in Chinese).
    李小军. 2013. 地震动参数区划图场地条件影响调整[J]. 岩土工程学报,35(增刊):21–29.
    Li X J. 2013. Adjustment of seismic ground motion parameters considering site effects in seismic zonation map[J]. Chinese Jour nal of Geotechnical Engineering,35(S2):21–29 (in Chinese).
    汪闻韶. 1994. 土工地震减灾工程中的一个重要参量:剪切波速[J]. 水利学报,(3):80–84. doi: 10.3321/j.issn:0559-9350.1994.03.012
    Wang W S. 1994. An important parameter in geotechnical engineering for earthquake disaster mitigation:Shear wave velocity[J]. Journal of Hydraulic Engineering,(3):80–84 (in Chinese).
    姚冬生,方飞龙,李朝阳. 1990. 四川省区域地质概况及特征[J]. 中国区域地质,(1):8–13.
    Yao D S,Fang F L,Li C Y. 1990. A general account of the regional geology of Sichuan Province[J]. Regional Geology of China,(1):8–13 (in Chinese).
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2016. GB50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 18–20.
    Ministry of Housing and Urban-rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2016. GB50011−2010 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press: 18–20 (in Chinese).
    Boore D M. 2004. Estimating ˉvS30 (or NEHRP site classes) from shallow velocity models (depths<30 m)[J]. Bull Seismol Soc Am,94(2):591–597. doi: 10.1785/0120030105
    Boore D M,Thompson E M,Cadet H. 2011. Regional correlations of ˉvS30 and velocities averaged over depths less than and greater than 30 meters[J]. Bull Seismol Soc Am,101(6):3046–3059. doi: 10.1785/0120110071
    Bozorgnia Y,Abrahamson N A,Atik L A,Ancheta T D,Atkinson G M,Baker J W,Baltay A S,Boore D M,Campbell K W,Chiou B S J,Darragh R B,Day S,Donahue J,Graves R W,Gregor N,Hands T C,Idriss I M,Kamai R,Rowshandel B,Seyhan E,Shahi S,Shantz T,Silva W,Spudich P A,Stewart J P,Watson-Lamprey J,Wooddell K,Youngs R. 2014. NGA-West2 research project[J]. Earthq Spectra,30(3):973–987. doi: 10.1193/072113EQS209M
    Building Seismic Safety Council. 2015. NEHRP Recommended Seismic Provisions for New Buildings and Other Structures[S]. Washington D.C.: Federal Emergency Management Agency: 86−87.
    Dai Z J,Li X J,Hou C L. 2013. A shear-wave velocity model for vS30 estimation based on a conditional independence property[J]. Bull Seismol Soc Am,103(6):3354–3361. doi: 10.1785/0120130025
    Kuo C H,Cheng D S,Hsieh H H,Chang T M,Chiang H J,Lin C M,Wen K L. 2009. Comparison of three different methods in investigating shallow shear-wave velocity structures in Ilan,Taiwan[J]. Soil Dyn Earthq Eng,29(1):133–143. doi: 10.1016/j.soildyn.2008.01.010
    Kuo C H,Wen K L,Hsieh H H,Chang T M,Lin C M,Chen C T. 2011. Evaluating empirical regression equations for vS and estimating vS30 in northeastern Taiwan[J]. Soil Dyn Earthq Eng,31(3):431–439. doi: 10.1016/j.soildyn.2010.09.012
    Stewart J P,Klimis N,Savvaidis A,Theodoulidis N,Zargli E,Athanasopoulos G,Pelekis P,Mylonakis G,Margaris B. 2014. Compilation of a local vS profile database and its application for inference of vS30 from geologic- and terrain-based proxies[J]. Bull Seismol Soc Am,104(6):2827–2841. doi: 10.1785/0120130331
    Wills C J,Clahan K B. 2006. Developing a map of geologically defined site-condition categories for California[J]. Bull Seismol Soc Am,96(4A):1483–1501. doi: 10.1785/0120050179
    Xie J J,Zimmaro P,Li X J,Wen Z P,Song Y S. 2016. vS30 empirical prediction relationships based on a new soil-profile database for the Beijing plain area,China[J]. Bull Seismol Soc Am,106(6):2843–2854. doi: 10.1785/0120160053
    Yong A L. 2016. Comparison of measured and proxy-based vS30 values in California[J]. Earthq Spectra,32(1):171–192. doi: 10.1193/013114EQS025M

Catalog

    Article views (576) PDF downloads (112) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return