Jing Y L,He L H,Li M H,Zhang Y X,Zheng S Y. 2021. S wave envelope synthesis based on different scattering patterns. Acta Seismologica Sinica43(6):679−689. DOI: 10.11939/jass.20200208
Citation: Jing Y L,He L H,Li M H,Zhang Y X,Zheng S Y. 2021. S wave envelope synthesis based on different scattering patterns. Acta Seismologica Sinica43(6):679−689. DOI: 10.11939/jass.20200208

S wave envelope synthesis based on different scattering patterns

More Information
  • Received Date: December 20, 2020
  • Revised Date: April 21, 2021
  • Available Online: December 05, 2021
  • Published Date: December 30, 2021
  • In order to reveal the scattering process of seismic waves in the small scale inhomogeneous medium of the crust and to describe the envelopment broadening phenomenon of seismic waves more accurately, a discrete wave-number method is used to solve the improved seismic wave energy density integral equation based on the multiple anisotropic scattering theory, and the scattering pattern represented by Gaussian autocorrelation function is selected to obtain the S wave energy density envelope. Firstly, we analyzed the contribution of single scattering and multiple scattering to the energy density envelope of S wave. Then, we discussed the effects of absorption coefficient and total scattering coefficient on the synthesis of S wave energy density envelope. Finally, we compared the differences of the energy density envelope of S wave synthesized in different scattering patterns. The results show that: ① The contribution of single scattering and multiple scattering to the seismic wave scattering process is consistent, and for the near earthquakes (hypocentral distance is less than 100 km), the single scattering model can be used to match the S-wave energy density envelope. As the hypocentral distance increases, the multiple forward scattering pattern can approach the total energy density envelope more quickly. ② As the absorption coefficient increases, the amplitude of the direct S wave and the coda wave will decrease. And when the total scattering coefficient increases, the amplitude of the direct S wave will decrease, while the coda wave amplitude of the S wave will increase. ③ In the forward scattering pattern, with the increase of hypocentral distance, the energy density envelope of S-wave appears the peak delay, the envelope is widened, and the attenuation consistency of the coda wave is accelerated.
  • 范小平,李清河,杨从杰,何海兵,金淑梅. 2009. 长白山天池火山区介质非均匀性[J]. 地球物理学报,52(10):2580–2587. doi: 10.3969/j.issn.0001-5733.2009.10.017
    Fan X P,Li Q H,Yang C J,He H B,Jin S M. 2009. Medium inhomogeneity of crust in Changbaishan Tianchi volcano[J]. Chinese Journal of Geophysics,52(10):2580–2587 (in Chinese).
    景月岭,Zeng Y H,林皋,Chen G D,李建波. 2012. 多次各向异性散射模式对S波能量密度包络曲线的影响[J]. 地球物理学报,55(6):1993–2003. doi: 10.6038/j.issn.0001-5733.2012.06.021
    Jing Y L,Zeng Y H,Lin G,Chen G D,Li J B. 2012. The effect of multiple anisotropic scattering pattern on S wave energy density envelope[J]. Chinese Journal of Geophysics,55(6):1993–2003 (in Chinese).
    聂永安,曾健,冯德益. 1995. 三维尾波散射问题的理论研究[J]. 地震学报,17(1):68–71.
    Nie Y A,Zeng J,Feng D Y. 1995. A theoretical study on the problem of 3-D wake scattering[J]. Acta Seismologica Sinica,17(1):68–71 (in Chinese).
    邵婕,唐杰,孙成禹. 2016. 地震波散射理论及应用研究进展[J]. 地球物理学进展,31(1):334–343. doi: 10.6038/pg20160139
    Shao J,Tang J,Sun C Y. 2016. Progress of seismic wave scattering theory and application[J]. Progress in Geophysics,31(1):334–343 (in Chinese).
    曾健,聂永安. 1989. 单次与多次散射对地方震尾波的作用[J]. 地震学报,11(1):12–23.
    Zeng J,Nie Y A. 1989. The effects of single and multiple scattering on coda waves for local earthquakes[J]. Acta Seismologica Sinica,11(1):12–23 (in Chinese).
    Aki K. 1969. Analysis of the seismic coda of local earthquakes as scattered waves[J]. J Geophys Res,74(2):615–631. doi: 10.1029/JB074i002p00615
    Aki K,Chouet B. 1975. Origin of coda waves:Source,attenuation,and scattering effects[J]. J Geophys Res,80(23):3322–3342. doi: 10.1029/JB080i023p03322
    Bouchon M. 1979. Discrete wave number representation of elastic wave fields in three-space dimensions[J]. J Geophys Res,84(B7):3609–3614. doi: 10.1029/JB084iB07p03609
    Bouchon M. 2003. A review of the discrete wave number method[J]. Pure Appl Geophys,160(3):445–465. doi: 10.1007/PL00012545
    Calvet M,Margerin L. 2013. Lapse-time dependence of coda Q:Anisotropic multiple-scattering models and application to the Pyrenees[J]. Bull Seismol Soc Am,103(3):1993–2010. doi: 10.1785/0120120239
    Gusev A A,Abubakirov I R. 1987. Monte-Carlo simulation of record envelope of a near earthquake[J]. Phys Earth Planet Inter,49(1/2):30–36.
    Gusev A A,Abubakirov I R. 1996. Simulated envelopes of non-isotropically scattered body waves as compared to observed ones:Another manifestation of fractal heterogeneity[J]. Geophys J Int,127(1):49–60. doi: 10.1111/j.1365-246X.1996.tb01534.x
    Hoshiba M. 1991. Simulation of multiple-scattered coda wave excitation based on the energy conservation law[J]. Phys Earth Planet Inter,67:123–136. doi: 10.1016/0031-9201(91)90066-Q
    Hoshiba M. 1995. Estimation of nonisotropic scattering in western Japan using coda wave envelopes:Application of a multiple nonisotropic scattering model[J]. J Geophys Res,100(B1):645–657. doi: 10.1029/94JB02064
    Imperatori W,Mai P M. 2012. Sensitivity of broad-band ground-motion simulations to earthquake source and Earth structure variations:An application to the Messina Straits (Italy)[J]. Geophys J Int,188(3):1103–1116. doi: 10.1111/j.1365-246X.2011.05296.x
    Imperatori W,Mai P M. 2013. Broad-band near-field ground motion simulations in 3-dimensional scattering media[J]. Geophys J Int,192(2):725–744. doi: 10.1093/gji/ggs041
    Jing Y L,Zeng Y H,Lin G. 2014. High-frequency seismogram envelope inversion using a multiple nonisotropic scattering model:Application to aftershocks of the 2008 Wells earthquake[J]. Bull Seismol Soc Am,104(2):823–839. doi: 10.1785/0120120334
    Margerin L. 2017. Computation of Green’s function of 3-D radiative transport equations for non-isotropic scattering of P and unpolarized S waves[J]. Pure Appl Geophys,174(11):4057–4075. doi: 10.1007/s00024-017-1621-z
    Sato H. 1977. Energy propagation including scattering effects single isotropic scattering approximation[J]. J Phys Earth,25(1):27–41. doi: 10.4294/jpe1952.25.27
    Sato H. 1994. Formulation of the multiple non-isotropic scattering process in 2-D space on the basis of energy-transport theory[J]. Geophys J Int,117(3):727–732. doi: 10.1111/j.1365-246X.1994.tb02465.x
    Sato H. 1995. Formulation of the multiple non-isotropic scattering process in 3-D space on the basis of energy transport theory[J]. Geophys J Int,121(2):523–531. doi: 10.1111/j.1365-246X.1995.tb05730.x
    Wegler U,Korn M,Przybilla J. 2006. Modeling full seismogram envelopes using radiative transfer theory with born scattering coefficients[J]. Pure Appl Geophys,163(2):503–531.
    Wu R S. 1985. Multiple scattering and energy transfer of seismic waves–separation of scattering effect from intrinsic attenuation-I:Theoretical modelling[J]. Geophys J R Astr Soc,82(1):57–80. doi: 10.1111/j.1365-246X.1985.tb05128.x
    Wu R S,Aki K. 1988. Multiple scattering and energy transfer of seismic waves-separation of scattering effect from intrinsic attenuation. II. Application of the theory to Hindu Kush region[J]. Pure Appl Geophys,128(1):49–80.
    Zeng Y H,Su F,Aki K. 1991. Scattering wave energy propagation in a random isotropic scattering medium 1:Theory[J]. J Geophys Res,96(B1):607–619. doi: 10.1029/90JB02012
    Zeng Y H. 1993. Theory of scattered P- and S-wave energy in a random isotropic scattering medium[J]. Bull Seismol Soc Am,83(4):1264–1276. doi: 10.1785/BSSA0830041264
    Zeng Y H. 2017. Modeling of high frequency seismic wave scattering and propagation using radiative transfer theory[J]. Bull Seismol Soc Am,107(6):2948–2962. doi: 10.1785/0120160241
  • Related Articles

Catalog

    Article views (513) PDF downloads (62) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return