Liu J D,Ding Z F,Wu Y,Jiang L. 2022. Crustal thickness and Poisson’s ratio of orogenic belts in northern North China Craton using teleseismic receiver functions. Acta Seismologica Sinica44(3):357−373. DOI: 10.11939/jass.20210001
Citation: Liu J D,Ding Z F,Wu Y,Jiang L. 2022. Crustal thickness and Poisson’s ratio of orogenic belts in northern North China Craton using teleseismic receiver functions. Acta Seismologica Sinica44(3):357−373. DOI: 10.11939/jass.20210001

Crustal thickness and Poisson’s ratio of orogenic belts in northern North China Craton using teleseismic receiver functions

More Information
  • Received Date: January 03, 2021
  • Revised Date: May 30, 2021
  • Available Online: April 07, 2022
  • Published Date: June 26, 2022
  • The thickness and Poisson’s ratio of crust of the North China Craton (NCC) are of great significance to the study of lithospheric evolution of the North China Craton. We collected receiver functions from 115 broadband seismic stations and six very broadband seismic stations on the Taihang-Yanshan orogenic belt and its adjacent areas in the northern North China Craton recorded from October 2006 to September 2009. First we used predictive deconvolution method to eliminate the influence of sedimentary on receiver function waveform. Then the effects of S wave azimuthal anisotropy and interfaces dipping were corrected by using H-κ-c stacking method. Finally, the thickness and Poisson’s ratio of research area were obtained. Our results are featured by lateral variation. The crust thickness in the research area is thick in the western block and thin in the eastern block, and is highly correlated to the topography, which is consistence with Airy isostasy. The low Poisson’s ratio of western block represent relative stability of the crust, the distribution of Poisson’s ratio in central orogenic belt and eastern block is inhomogeneous, suggests that the complex transformation process has been suffered in the crust. Combined with the previous research results, we speculate that there existed partial melting and mantle upwelling in the lower crust of Huailai-Yanqing basin and southern Tangshan, and lower crust detachment might have occurred on the north of Shijiazhuang, and the lower crust of Baoding-Fangshan may have been suffered mantle upwelling under the influence of extension after its detachment. The different crust structures of different areas result in the differences of crustal thickness and Poisson’s ratio distribution which are obtained by H-κ-c stacking as well as H-κ stacking.
  • 常利军,王椿镛,丁志峰. 2012. 华北上地幔各向异性研究[J]. 地球物理学报,55(3):886–896. doi: 10.6038/j.issn.0001-5733.2012.03.018
    Chang L J,Wang C Y,Ding Z F. 2012. Upper mantle anisotropy beneath North China[J]. Chinese Journal of Geophysics,55(3):886–896 (in Chinese).
    段永红,王夫运,张先康,林吉焱,刘志,刘保峰,杨卓欣,郭文斌,魏运浩. 2016. 华北克拉通中东部地壳三维速度结构模型(HBCrust1.0)[J]. 中国科学:地球科学,46(6):845–856.
    Duan Y H,Wang F Y,Zhang X K,Lin J Y,Liu Z,Liu B F,Yang Z X,Guo W B,Wei Y H. 2016. Three-dimensional crustal velocity structure model of the middle-eastern North China Craton (HBCrust1.0)[J]. Science China Earth Sciences,59(7):1477–1488. doi: 10.1007/s11430-016-5301-0
    房立华,吴建平. 2009. 倾斜界面和各向异性介质对接收函数的影响[J]. 地球物理学进展,24(1):42–50.
    Fang L H,Wu J P. 2009. Effects of dipping boundaries and anisotropic media on receiver functions[J]. Progress in Geophysics,24(1):42–50 (in Chinese).
    房立华,吴建平,王未来,王长在,杨婷. 2013. 华北地区勒夫波噪声层析成像研究[J]. 地球物理学报,56(7):2268–2279. doi: 10.6038/cjg20130714
    Fang L H,Wu J P,Wang W L,Wang C Z,Yang T. 2013. Love wave tomography from ambient seismic noise in North-China[J]. Chinese Journal of Geophysics,56(7):2268–2279 (in Chinese).
    高战武,徐杰,宋长青,孙键宝. 2001. 张家口:蓬莱断裂带的分段特征[J]. 华北地震科学,19(1):35–42. doi: 10.3969/j.issn.1003-1375.2001.01.006
    Gao Z W,Xu J,Song C Q,Sun J B. 2001. The segmental character of Zhangjiakou-Penglai fault[J]. North China Earthquake Sciences,19(1):35–42 (in Chinese).
    葛粲,郑勇,熊熊. 2011. 华北地区地壳厚度与泊松比研究[J]. 地球物理学报,54(10):2538–2548. doi: 10.3969/j.issn.0001-5733.2011.10.011
    Ge C,Zheng Y,Xiong X. 2011. Study of crustal thickness and Poisson ratio of the North China Craton[J]. Chinese Journal of Geophysics,54(10):2538–2548 (in Chinese).
    顾功叙. 1983. 中国地震目录 (公元前1831—公元1969年)[M]. 北京: 科学出版社: 665–685.
    Gu G X. 1983. Catalogue of Chinese Earthquakes, 1831BC—1969AD[M]. Beijing: China Science Publishing & Media Ltd: 665–685 (in Chinese).
    贺传松,朱露培,丁志峰,潘纪顺. 2010. 用远震接收函数研究渤海盆地的沉积覆盖[J]. 地质学报,84(5):716–722.
    He C S,Zhu L P,Ding Z F,Pan J S. 2010. Sedimentary cover in the Bohai Basin using teleseismic receiver function[J]. Acta Geologica Sinica,84(5):716–722 (in Chinese).
    嵇少丞,王茜,杨文采. 2009. 华北克拉通泊松比与地壳厚度的关系及其大地构造意义[J]. 地质学报,83(3):324–330. doi: 10.3321/j.issn:0001-5717.2009.03.002
    Ji S C,Wang Q,Yang W C. 2009. Correlation between crustal thickness and Poisson’s ratio in the North China Craton and its implication for lithospheric thinning[J]. Acta Geologica Sinica,83(3):324–330 (in Chinese).
    刘琼林,王椿镛,姚志祥,常利军,楼海. 2011. 华北克拉通中西部地区地壳厚度与波速比研究[J]. 地球物理学报,54(9):2213–2224. doi: 10.3969/j.issn.0001-5733.2011.09.003
    Liu Q L,Wang C Y,Yao Z X,Chang L J,Lou H. 2011. Study on crustal thickness and velocity ratio in mid-western North China Craton[J]. Chinese Journal of Geophysics,54(9):2213–2224 (in Chinese).
    罗艳,崇加军,倪四道,陈棋福,陈颙. 2008. 首都圈地区莫霍面起伏及沉积层厚度[J]. 地球物理学报,51(4):1135–1145. doi: 10.3321/j.issn:0001-5733.2008.04.022
    Luo Y,Chong J J,Ni S D,Chen Q F,Chen Y. 2008. Moho depth and sedimentary thickness in Capital region[J]. Chinese Journal of Geophysics,51(4):1135–1145 (in Chinese).
    齐刚. 2014. 太行山与燕山交汇部位的地壳厚度与泊松比研究[D]. 北京: 中国地震局地球物理研究所: 31–34.
    Qi G. 2014. The Crustal Thickness and Poisson’s Ratio in the Junction of the Taihangshan Region and the Yanshan Tectonic Belt[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 31–34 (in Chinese).
    齐刚,陈棋福. 2015. 太行山与燕山交汇部位的地壳厚度与泊松比分布特征[J]. 地球物理学报,58(9):3239–3250. doi: 10.6038/cjg20150919
    Qi G,Chen Q F. 2015. Distribution of the crustal thickness and Poisson’s ratio beneath the junction of the Taihangshan and the Yanshan tectonic belts[J]. Chinese Journal of Geophysics,58(9):3239–3250 (in Chinese).
    曲中党,张训华,贺日政,吴志强,张洪双,吴蔚. 2018. 华北盆地边缘及邻区地壳S波速度结构及其地震孕育机制[J]. 地球物理学进展,33(3):957–968. doi: 10.6038/pg2018BB0348
    Qu Z D,Zhang X H,He R Z,Wu Z Q,Zhang H S,Wu W. 2018. S wave velocity structure of the crust and the mechanisms of earthquake occurrence in the North China basin and its adjacent areas[J]. Progress in Geophysics,33(3):957–968 (in Chinese).
    谭萍,陈赟,孙维昭,李玮,唐国彬,崔田. 2018. 一种改进的适应于倾斜Moho面的H-κ-θ叠加方法及应用[J]. 地球物理学报,61(9):3689–3700. doi: 10.6038/cjg2018M0032
    Tan P,Chen Y,Sun W Z,Li W,Tang G B,Cui T. 2018. An improved H-κ-θ stacking method to determine the crustal thickness and bulk vP/vS ratios in the case of a slant Moho interface[J]. Chinese Journal of Geophysics,61(9):3689–3700 (in Chinese).
    唐新功. 2009. 鄂尔多斯地区重力均衡研究[J]. 工程地球物理学报,6(4):395–398.
    Tang X G. 2009. Isostatic gravity study of Ordos block[J]. Chinese Journal of Engineering Geophysics,6(4):395–398 (in Chinese).
    田宝峰,李娟,王卫民,赵连锋,姚振兴. 2008. 华北太行山区地壳各向异性的接收函数证据[J]. 地球物理学报,51(5):1459–1467. doi: 10.3321/j.issn:0001-5733.2008.05.019
    Tian B F,Li J,Wang W M,Zhao L F,Yao Z X. 2008. Crust anisotropy of Taihangshan mountain range in North China inferred from receiver functions[J]. Chinese Journal of Geophysics,51(5):1459–1467 (in Chinese).
    危自根,储日升,陈凌. 2015. 华北克拉通地壳结构区域差异的接收函数研究[J]. 中国科学:地球科学,45(10):1504–1514.
    Wei Z G,Chu R S,Chen L. 2015. Regional differences in crustal structure of the North China Craton from receiver functions[J]. Science China Earth Sciences,58(12):2200–2210 (in Chinese).
    吴福元,葛文春,孙德有,郭春丽. 2003. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘,10(3):51–60. doi: 10.3321/j.issn:1005-2321.2003.03.004
    Wu F Y,Ge W C,Sun D Y,Guo C L. 2003. Discussions on the lithospheric thinning in eastern China[J]. Earth Science Frontiers,10(3):51–60 (in Chinese).
    吴福元,李献华,杨进辉,郑永飞. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报,23(6):1217–1238. doi: 10.3969/j.issn.1000-0569.2007.06.001
    Wu F Y,Li X H,Yang J H,Zheng Y F. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica,23(6):1217–1238 (in Chinese).
    武岩. 2011. 利用接收函数方法研究华北克拉通地壳上地幔结构[D]. 北京: 中国地震局地球物理研究所: 27–28.
    Wu Y. 2011. The Structure of the Crust and Upper Mantle in North China Craton From Teleseismic Receiver Function[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 27–28 (in Chinese).
    武岩,丁志峰,朱露培. 2014. 利用接收函数研究渤海湾盆地沉积层结构[J]. 地震学报,36(5):837–849.
    Wu Y,Ding Z F,Zhu L P. 2014. Sedimentary basin structure of the Bohai Bay from teleseismic receiver functions[J]. Acta Seismologica Sinica,36(5):837–849 (in Chinese).
    武岩,丁志峰,王兴臣,朱露培. 2018. 华北克拉通地壳结构及动力学机制分析[J]. 地球物理学报,61(7):2705–2718. doi: 10.6038/cjg2018L0244
    Wu Y,Ding Z F,Wang X C,Zhu L P. 2018. Crustal structure and geodynamics of the North China Craton derived from a receiver function analysis of seismic wave data[J]. Chinese Journal of Geophysics,61(7):2705–2718 (in Chinese).
    许卫卫,郑天愉. 2005. 渤海湾盆地北西盆山边界地区泊松比分布[J]. 地球物理学报,48(5):1077–1084. doi: 10.3321/j.issn:0001-5733.2005.05.014
    Xu W W,Zheng T Y. 2005. Distribution of Poisson’s ratios in the northwestern basin-mountain boundary of the Bohai Bay Basin[J]. Chinese Journal of Geophysics,48(5):1077–1084 (in Chinese).
    杨妍,姚华建,张萍,陈凌. 2018. 用接收函数方法研究华北克拉通中部造山带及其邻域地壳方位各向异性[J]. 中国科学:地球科学,48(7):912–923.
    Yang Y,Yao H J,Zhang P,Chen L. 2018. Crustal azimuthal anisotropy in the Trans-North China Orogen and adjacent regions from receiver functions[J]. Science China Earth Sciences,61(7):903–913. doi: 10.1007/s11430-017-9209-9
    张毅. 2019. 应用接收函数方法研究中国东部壳幔间断面结构[D]. 北京: 中国地质大学(北京): 61–67.
    Zhang Y. 2019. Study of the Crust-Mantle Discontinuity Structure in Eastern China With Receiver Function Method[D]. Beijing: China University of Geosciences (Beijing): 61–67 (in Chinese).
    张莹莹,高原,石玉涛,Liu K. 2015. 张家口—渤海地震活动带及其邻区的地壳厚度与泊松比分布[J]. 地震学报,37(4):541–553. doi: 10.11939/jass.2015.04.002
    Zhang Y Y,Gao Y,Shi Y T,Liu K. 2015. Crustal thickness and Poisson’s ratio beneath Zhangjiakou-Bohai seismic active belt and its neighboring regions[J]. Acta Seismologica Sinica,37(4):541–553 (in Chinese).
    朱洪翔,田有,刘财,冯晅. 2018. 沉积盆地地区地壳结构估计:预测反褶积方法消除接收函数多次波混响[J]. 地球物理学报,61(9):3664–3675. doi: 10.6038/cjg2018L0152
    Zhu H X,Tian Y,Liu C,Feng X. 2018. Estimation of the crustal structure beneath the sedimentary basin:Predictive deconvolution method to remove multiples reverberations of the receiver function[J]. Chinese Journal of Geophysics,61(9):3664–3675 (in Chinese).
    朱日祥,徐义刚,朱光,张宏福,夏群科,郑天愉. 2012. 华北克拉通破坏[J]. 中国科学:地球科学,42(8):1135–1159.
    Zhu R X,Xu Y G,Zhu G,Zhang H F,Xia Q K,Zheng T Y. 2012. Destruction of the North China Craton[J]. Science China Earth Sciences,55(10):1565–1587. doi: 10.1007/s11430-012-4516-y
    Bondár I,Storchak D. 2011. Improved location procedures at the International Seismological Centre[J]. Geophys J Int,186(3):1220–1244. doi: 10.1111/j.1365-246X.2011.05107.x
    Chen L,Tao W,Zhao L,Zheng T Y. 2008. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton[J]. Earth Planet Sci Let,267(1/2):56–68.
    Cheng C,Chen L,Yao H J,Jiang M M,Wang B Y. 2013. Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications[J]. Gondwana Res,23(1):25–38. doi: 10.1016/j.gr.2012.02.014
    Christensen N I. 1996. Poisson’s ratio and crustal seismology[J]. J Geophys Res,101(B2):3139–3156. doi: 10.1029/95JB03446
    Efron B,Tibshirani R. 1986. Bootstrap methods for standard errors,confidence intervals,and other measures of statistical accuracy[J]. Stat Sci,1(1):54–75.
    Fu Y V,Gao Y,Li A B,Lu L Y,Shi Y T,Zhang Y. 2016. The anisotropic structure in the crust in the northern part of North China from ambient seismic noise tomography[J]. Geophys J Int,204(3):1649–1661. doi: 10.1093/gji/ggv549
    Gao Y,Wu J,Yi G X,Shi Y T. 2010. Crust-mantle coupling in North China:Preliminary analysis from seismic anisotropy[J]. Chinese Science Bulletin,55(31):3599–3605. doi: 10.1007/s11434-010-4135-y
    He C S,Dong S W,Santosh M,Li Q S,Chen X H. 2015. Destruction of the North China Craton:A perspective based on receiver function analysis[J]. Geol J,50(1):93–103. doi: 10.1002/gj.2530
    Huang J L,Zhao D P. 2009. Seismic imaging of the crust and upper mantle under Beijing and surrounding regions[J]. Phys Earth Planet Inter,173(3/4):330–348.
    Jia S X,Wang F Y,Tian X F,Duan Y H,Zhang J S,Liu B F,Lin J Y. 2014. Crustal structure and tectonic study of North China Craton from a long deep seismic sounding profile[J]. Tectonophysics,627:48–56. doi: 10.1016/j.tecto.2014.04.013
    Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
    Langston C A. 1979. Structure under Mount Rainier,Washington,inferred from teleseismic body waves[J]. J Geophys Res,84(B9):4749–4762. doi: 10.1029/JB084iB09p04749
    Levin V,Park J. 1997. Crustal anisotropy in the Ural Mountains foredeep from teleseismic receiver functions[J]. Geophys Res Lett,24(11):1283–1286. doi: 10.1029/97GL51321
    Li J T,Song X D,Wang P,Zhu L P. 2019. A generalized H-κ method with harmonic corrections on Ps and its crustal multiples in receiver functions[J]. J Geophys Res:Solid Earth,124(4):3782–3801. doi: 10.1029/2018JB016356
    Ligorría J P,Ammon C J. 1999. Iterative deconvolution and receiver-function estimation[J]. Bull Seismol Soc Am,89(5):1395–1400. doi: 10.1785/BSSA0890051395
    Owens T J,Crosson R S. 1988. Shallow structure effects on broadband teleseismic P waveforms[J]. Bull Seismol Soc Am,78(1):96–108. doi: 10.1785/BSSA0780010096
    Pavlis N K,Holmes S A,Kenyon S C,Factor J K. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008)[J]. J Geophys Res,117(B4):B04406.
    Tang Y C,Chen Y J,Zhou S Y,Ning J Y,Ding Z F. 2013. Lithosphere structure and thickness beneath the North China Craton from joint inversion of ambient noise and surface wave tomography[J]. J Geophys Res:Solid Earth,118(5):2333–2346. doi: 10.1002/jgrb.50191
    Wessel P,Smith W H F,Scharroo R,Luis J,Wobbe F. 2013. Generic mapping tools:Improved version released[J]. Eos Trans Am Geophys Union,94(45):409–410.
    Yeck W L,Sheehan A F,Schulte-Pelkum V. 2013. Sequential H-κ stacking to obtain accurate crustal thicknesses beneath sedimentary basins[J]. Bull Seismol Soc Am,103(3):2142–2150. doi: 10.1785/0120120290
    Yu Y Q,Song J G,Liu K H,Gao S S. 2015. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions[J]. J Geophys Res:Solid Earth,120(5):3208–3218. doi: 10.1002/2014JB011610
    Yuan X H,Ni J,Kind R,Mechie J,Sandvol E. 1997. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment[J]. J Geophys Res,102(B12):27491–27500. doi: 10.1029/97JB02379
    Zandt G,Ammon C J. 1995. Continental crust composition constrained by measurements of crustal Poisson’s ratio[J]. Nature,374(6518):152–154. doi: 10.1038/374152a0
    Zhang C,Yao H J,Liu Q Y,Zhang P,Yuan Y O,Feng J K,Fang L H. 2018. Linear array ambient noise adjoint tomography reveals intense crust-mantle interactions in North China Craton[J]. J Geophys Res:Solid Earth,123(1):368–383. doi: 10.1002/2017JB015019
    Zhang P,Yao H J,Chen L,Fang L H,Wu Y,Feng J K. 2019. Moho depth variations from receiver function imaging in the northeastern North China Craton and its tectonic implications[J]. J Geophys Res:Solid Earth,124(2):1852–1870. doi: 10.1029/2018JB016122
    Zhang Y,Huang J L. 2019. Structure of the sediment and crust in the northeast North China Craton from improved sequential H-κ stacking method[J]. Open Geosci,11(1):682–696. doi: 10.1515/geo-2019-0054
    Zhao G C,Wilde S A,Cawood P A,Lu L Z. 1998. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. Int Geol Rev,40(8):706–721. doi: 10.1080/00206819809465233
    Zhao G C,Wilde S A,Cawood P A,Sun M. 2001. Archean blocks and their boundaries in the North China Craton:Lithological,geochemical,structural and P–T path constraints and tectonic evolution[J]. Precambrian Res,107(1/2):45–73.
    Zhao G C,Sun M,Wilde S A,Li S Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:Key issues revisited[J]. Precambrian Res,136(2):177–202. doi: 10.1016/j.precamres.2004.10.002
    Zheng T Y,Chen L,Zhao L,Zhu R X. 2007. Crustal structure across the Yanshan belt at the northern margin of the North China Craton[J]. Phys Earth Planet Inter,161(1/2):36–49.
    Zheng T, Ding Z F, Ning J Y, Liu K H, Gao S S, Chang L J, Kong F S, Fan X P. 2019. Crustal azimuthal anisotropy beneath the central North China Craton revealed by receiver functions[J]. Geochem, Geophys, Geosyst, 20(5): 2235–2251.
    Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res:Solid Earth,105(B2):2969–2980. doi: 10.1029/1999JB900322
  • Related Articles

  • Cited by

    Periodical cited type(2)

    1. Xingmian Zhang,Meng Gong,Jian Lü,Hongxing Li,Jie Hu,Junwen He,Jianhua Peng,Bingyue Liu. Crustal structure in the Anyuan Coal Mine and its adjacent areas of Jiangxi Province by P-wave receiver functions. Earthquake Research Advances. 2024(01): 47-58 .
    2. 穆青,黄荣,严加永,卢占武,罗银河,张永谦,姜小欢,文宏斌,魏鹏龙,周万里. 利用接收函数H-κ-c叠加方法约束武陵山重力梯度带地壳结构. 地学前缘. 2023(05): 369-383 .

    Other cited types(1)

Catalog

    Article views (609) PDF downloads (158) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return