Zhong J,Wang B,Yan W,Ma Y C. 2021. Dynamic characteristics of fault hydrogen concentration in Aksu and its earthquake reflecting efficiency. Acta Seismologica Sinica43(5):615−627. DOI: 10.11939/jass.20210007
Citation: Zhong J,Wang B,Yan W,Ma Y C. 2021. Dynamic characteristics of fault hydrogen concentration in Aksu and its earthquake reflecting efficiency. Acta Seismologica Sinica43(5):615−627. DOI: 10.11939/jass.20210007

Dynamic characteristics of fault hydrogen concentration in Aksu and its earthquake reflecting efficiency

More Information
  • Received Date: January 16, 2021
  • Revised Date: April 01, 2021
  • Available Online: October 10, 2021
  • Published Date: September 29, 2021
  • This paper firstly analyzed the periodic components of the fault hydrogen concentration observation data in Aksu, and then explored the relationship between temperature, atmospheric pressure and the annual periodic components of hydrogen concentration using the linear regression and cross-correlation methods, respectively. At the same time, the Molchan error diagram method was used to quantitatively verify the earthquake reflecting efficiency of fault hydrogen in Aksu. The results show that: ① Fault hydrogen concentration in Aksu has clear annual and semi-daily periodic components; ② There is a significant positive correlation between the annual dynamic changes of fault hydrogen concentration and temperature, and a general correlation between the annual dynamic changes of hydrogen concentration and atmospheric pressure, indicating that the annual periodic changes of hydrogen concentration are mainly affected by temperature. The results from Molchan error diagram method show that the fault hydrogen concentration anomaly in Aksu is more sensitive to moderate-strong earthquakes around the observation point, suggesting better earthquake reflecting efficiency.
  • 车用太,刘耀炜,何钄. 2015. 断层带土壤气中H2观测:探索地震短临预报的新途径[J]. 地震,35(4):1–10. doi: 10.3969/j.issn.1000-3274.2015.04.001
    Che Y T,Liu Y W,He L. 2015. Hydrogen monitoring in fault zone soil gas: A new approach to short/immediate earthquake prediction[J]. Earthquake,35(4):1–10 (in Chinese).
    陈丰. 1996. 氢:地球深部流体的重要源泉[J]. 地学前缘,3(34):72–79.
    Chen F. 1996. Hydrogen:The important source of fluid in earth interior[J]. Earth Science Frontiers,3(34):72–79 (in Chinese).
    陈建波. 2008. 新疆地震构造特征研究[D]. 兰州: 中国地震局兰州地震研究所: 51.
    Chen J B. 2008. Research on Seismotectonic Features in Xinjiang[D]. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration: 51 (in Chinese).
    邓起东,张培震,冉勇康,杨晓平,闵伟,陈立春. 2003. 中国活动构造与地震活动[J]. 地学前缘,10(增刊1):66–73.
    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chen L C. 2003. Active tectonics and earthquake activities in China[J]. Earth Science Frontiers,10(S1):66–73 (in Chinese).
    杜建国,刘连柱,康春丽. 1997. 地震活动中地壳深部流体的作用研究进展[J]. 地球科学进展,12(5):416–421.
    Du J G,Liu L Z,Kang C L. 1997. The role of deep-crust fluids in earthquake activity[J]. Advances in Earth Science,12(5):416–421 (in Chinese).
    杜建国,宇文欣,李圣强,简春林,朱自强,陈华静,康春丽. 1998. 八宝山断裂带逸出氡的地球化学特征及其映震效能[J]. 地震,18(2):155–162.
    Du J G,Yu W X,Li S Q,Jian C L,Zhu Z Q,Chen H J,Kang C L. 1998. The geochemical characteristics of escaped radon from the Babaoshan fault zone and its earthquake reflecting effect[J]. Earthquake,18(2):155–162 (in Chinese).
    杜乐天,陈安福,王驹,黄树桃. 1995. 地球的排氢作用[J]. 矿物岩石地球化学通报,14(3):193–195.
    Du L T,Chen A F,Wang J,Huang S T. 1995. Discharge of hydrogen from the earth[J]. Bulletin of Mineralogy,Petrology and Geochemistry,14(3):193–195 (in Chinese).
    范雪芳,刘国俊,黄春玲,何镧,李孝楠. 2014. 山西东郭断层气氢浓度异常调查与研究[J]. 地震研究,37(2):171–177. doi: 10.3969/j.issn.1000-0666.2014.02.001
    Fan X F,Liu G J,Huang C L,He L,Li X N. 2014. Investigation and research of gas hydrogen concentration anomaly of Dongguo fault in Shanxi[J]. Journal of Seismological Research,37(2):171–177 (in Chinese).
    范雪芳,张磊,李自红,陶京岺. 2016. 断裂带土壤气高精度氢异常分析[J]. 地震地质,38(2):303–315. doi: 10.3969/j.issn.0253-4967.2016.02.006
    Fan X F,Zhang L,Li Z H,Tao J L. 2016. High-accuracy analysis of soil hydrogen anomaly in fault zone[J]. Seismology and Geology,38(2):303–315 (in Chinese).
    范雪芳,杨芷萌,李宏伟,吴桂娥,韩晓飞. 2020. 断层带土壤H2浓度变化特征及影响因素研究[J]. 地震研究,43(2):302–309. doi: 10.3969/j.issn.1000-0666.2020.02.012
    Fan X F,Yang Z M,Li H W,Wu G E,Han X F. 2020. Research on variation characteristics and influence factors of hydrogen concentration in the soil[J]. Journal of Seismological Research,43(2):302–309 (in Chinese).
    方震,张彬,李军辉,孙盼盼,汪世仙,缪鹏. 2020. 地热温泉井与土壤逸出气中痕量氢的特征及差异性分析[J]. 地震工程学报,42(3):705–713. doi: 10.3969/j.issn.1000-0844.2020.03.705
    Fang Z,Zhang B,Li J H,Sun P P,Wang S X,Miao P. 2020. Characteristics and difference of trace hydrogen in escape gas from geothermal hot spring well and soil[J]. China Earthquake Engineering Journal,42(3):705–713 (in Chinese).
    冯先岳. 1985. 论新疆地震地质特征[J]. 地震地质,7(2):35–44.
    Feng X Y. 1985. Seismogeological characteristics of the Xinjiang area[J]. Seismology and Geology,7(2):35–44 (in Chinese).
    何文渊,李江海,钱祥麟,郑多明. 2002. 塔里木盆地柯坪断隆断裂构造分析[J]. 中国地质,29(1):37–43. doi: 10.3969/j.issn.1000-3657.2002.01.007
    He W Y,Li J H,Qian X L,Zheng D M. 2002. Analysis of fault structures in the Kalpin uplift,Tarim basin[J]. Geology in China,29(1):37–43 (in Chinese).
    黄瑞芳,孙卫东,丁兴,王玉荣,詹文欢. 2015. 蛇纹石化过程中铁活动性的高温高压实验研究[J]. 岩石学报,31(3):883–890.
    Huang R F,Sun W D,Ding X,Wang Y R,Zhan W H. 2015. Experimental investigation of iron mobility during serpentinization[J]. Acta Petrologica Sinica,31(3):883–890 (in Chinese).
    蒋长胜,张浪平,韩立波,来贵娟. 2011. 中长期地震危险性概率预测中的统计检验方法I:Molchan图表法[J]. 地震,31(2):106–113. doi: 10.3969/j.issn.1000-3274.2011.02.012
    Jiang C S,Zhang L P,Han L B,Lai G J. 2011. Probabilistic forecasting method of long-term and intermediate-term seismichazardⅠ:Molchan error diagram[J]. Earthquake,31(2):106–113 (in Chinese).
    蒋凤亮, 李桂如, 王基华, 张培仁, 朱克文. 1989. 地震地球化学[M]. 北京: 地震出版社: 55–57.
    Jiang F L, Li G R, Wang J H, Zhang P R, Zhu K W. 1989. Seismological Geochemistry[M]. Beijing: Seismological Press: 55–57 (in Chinese).
    刘海洋,赖爱京,冯英,潘振生. 2020. 2017年9月16日库车MS5.7地震前阿克苏西大桥断层氢异常可靠性分析[J]. 内陆地震,34(2):187–195.
    Liu H Y,Lai A J,Feng Y,Pan Z S. 2020. Reliability analysis of hydrogen anomaly in Akesu west bridge fault before Kuche MS5.7 earthquake on September 16th,2017[J]. Inland Earthquake,34(2):187–195 (in Chinese).
    刘耀炜,施锦,曹玲玲,潘树新. 2000. 水化学参量中短期异常识别方法及效能评价[J]. 地震,20(增刊1):97–106.
    Liu Y W,Shi J,Cao L L,Pan S X. 2000. The discriminant method of medium and short-term anomaly and evaluation of prediction effect of hydrochemical parameters[J]. Earthquake,20(S1):97–106 (in Chinese).
    邵济安,赵谊,陆永发,唐克东. 2010. 黑龙江省氢气释放与地震及断块构造关系的探讨[J]. 地学前缘,17(5):271–277.
    Shao J A,Zhao Y,Lu Y F,Tang K D. 2010. The relation between H2 release and earthquake and block structure in Heilongjiang Province[J]. Earth Science Frontiers,17(5):271–277 (in Chinese).
    宋春燕,马瑾,王海涛,张琳琳. 2018. 强震前断裂亚失稳阶段及失稳部位的特征研究:以新疆南天山西段为例[J]. 地球物理学报,61(2):604–615. doi: 10.6038/cjg2018K0259
    Song C Y,Ma J,Wang H T,Zhang L L. 2018. Study on meta-instability stage and instable section of the fault before strong earthquake:Taking western section of southern Tianshan as an example[J]. Chinese Journal of Geophysics,61(2):604–615 (in Chinese).
    粟启初,Zeller E,Angino E. 1992. 沿断层逸出的氢气对地震的诱发作用[J]. 地震学报,14(2):229–235.
    Su Q C,Zeller E,Angino E. 1992. Evolvement of hydrogen evoked along faults on earthquakes[J]. Acta Seismologica Sinica,14(2):229–235 (in Chinese).
    孙小龙,邵志刚,司学芸,向阳,刘冬英. 2017. 断层带土壤氢气浓度测量及其影响因素[J]. 大地测量与地球动力学,37(4):436–440.
    Sun X L,Shao Z G,Si X Y,Xiang Y,Liu D Y. 2017. Soil hydrogen concentration in fault zone:Analysis of correspondinginfluence factors[J]. Journal of Geodesy and Geodynamics,37(4):436–440 (in Chinese).
    王博,钟骏,王熠熙,陈石. 2018. 南北地震带北段流体资料地震预测效能检验[J]. 地震,38(1):147–156. doi: 10.3969/j.issn.1000-3274.2018.01.014
    Wang B,Zhong J,Wang Y X,Chen S. 2018. Testing the forecast efficiency of underground fluid observation in the north segment of North-South Seismic Belt[J]. Earthquake,38(1):147–156 (in Chinese).
    王博,周永胜. 2017. 氢气与断层活动及地震的研究进展[J]. 地球物理学进展,32(5):1921–1929. doi: 10.6038/pg20170508
    Wang B,Zhou Y S. 2017. Review:Fault hydrogen mechanism and its interrelation with seismic activity[J]. Progress in Geophy-sics,32(5):1921–1929 (in Chinese).
    向阳,孙小龙,高小其,朱成英,李娜. 2018. 新疆库尔勒断层氢气浓度的影响因素及其地震预测的潜在效能评价[J]. 中国地震,34(1):48–59. doi: 10.3969/j.issn.1001-4683.2018.01.005
    Xiang Y,Sun X L,Gao X Q,Zhu C Y,Li N. 2018. The influential factors of fault hydrogen concentration and the potential efficiency evaluation of earthquake prediction in Korla,Xinjiang[J]. Earthquake Research in China,34(1):48–59 (in Chinese).
    张涛,朱成英,向阳. 2016. 阿克苏痕量氢观测资料初步分析[J]. 内陆地震,30(2):162–167.
    Zhang T,Zhu C Y,Xiang Y. 2016. Primary research on observation data of trace amounts of hydrogen in Akesu[J]. Inland Earthquake,30(2):162–167 (in Chinese).
    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊1):12–20.
    Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China:Series D,33(S1):12–20 (in Chinese).
    周晓成,石宏宇,陈超,曾令华,孙凤霞,李静,陈志,吕超甲,黄丹,杜建国. 2017. 汶川MS8.0地震破裂带土壤气中H2浓度时空变化[J]. 地球科学进展,32(8):818–827. doi: 10.11867/j.issn.1001-8166.2017.08.0818
    Zhou X C,Shi H Y,Chen C,Zeng L H,Sun F X,Li J,Chen Z,Lü C J,Huang D,Du J G. 2017. Spatial-temporal variations of H2 concentration in soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake[J]. Advances in Earth Science,32(8):818–827 (in Chinese).
    Dogan T,Mori T,Tsunomori F,Notsu K. 2007. Soil H2 and CO2 surveys at several active faults in Japan[J]. Pure Appl Geophys,164(12):2449–2463. doi: 10.1007/s00024-007-0277-5
    Fang Z,Liu Y W,Yang D X,Guo L S,Zhang L. 2018. Real-time hydrogen mud logging during the Wenchuan earthquake fault scientific drilling project (WFSD),holes 2 and 3 in SW China[J]. Geosci J,22(3):453–464. doi: 10.1007/s12303-017-0068-7
    Freund F,Dickinson J T,Cash M. 2002. Hydrogen in rocks:An energy source for deep microbial communities[J]. Astrobiology,2(1):83–92. doi: 10.1089/153110702753621367
    Gold T,Soter S. 1980. The deep earth gas hypothesis[J]. Sci Am,242(6):154–161. doi: 10.1038/scientificamerican0680-154
    Kameda J,Saruwatari K,Tanaka H,Tsunomori F. 2004. Mechanisms of hydrogen generation during the mechanochemical treatment of biotite within D2O media[J]. Earth Planets Space,56(12):1241–1245. doi: 10.1186/BF03353346
    King C Y,Zhang W,Zhang Z C. 2006. Earthquake-induced groundwater and gas changes[J]. Pure Appl Geophys,163(4):633–645. doi: 10.1007/s00024-006-0049-7
    Lombardi S,Voltattorni N. 2010. Rn,He and CO2 soil gas geochemistry for the study of active and inactive faults[J]. Appl Geochem,25(8):1206–1220. doi: 10.1016/j.apgeochem.2010.05.006
    Ma Y C,Wang G C,Tao Y C. 2018. Hydrological changes induced by distant earthquakes at the Lujiang well in Anhui,China[J]. Pure Appl Geophys,175(7):2459–2474. doi: 10.1007/s00024-017-1710-z
    McFadden P D,Cook J G,Forster L M. 1999. Decomposition of gear vibration signals by the generalised S transform[J]. Mech Syst Signal Process,13(5):691–707. doi: 10.1006/mssp.1999.1233
    Molchan G M. 1990. Strategies in strong earthquake prediction[J]. Phys Earth Planet Int,61(1/2):84–98. doi: 10.1016/0031-9201(90)90097-H
    Pizzino L,Burrato P,Quattrocchi F,Valensise G. 2004. Geochemical signatures of large active faults:The example of the 5 February 1783,Calabrian earthquake (southern Italy)[J]. J Seismol,8(3):363–380. doi: 10.1023/B:JOSE.0000038455.56343.e7
    Sato M,McGee K A. 1982. Continuous monitoring of hydrogen on south flank of Mount St. Helens[J]. USGS Professional Paper,1250:209–219.
    Sibson R H. 1977. Fault rocks and fault mechanisms[J]. J Geol Soc,133(3):191–213. doi: 10.1144/gsjgs.133.3.0191
    Sugisaki R. 1984. Relation between hydrogen emission and seismic activities[J]. Pure Appl Geophy,122(2):175–184.
    Wakita H,Nakamura Y,Kita I,Fujii N,Notsu K. 1980. Hydrogen release:New indicator of fault activity[J]. Science,210(4466):188–190. doi: 10.1126/science.210.4466.188
    Wang C Y,Chia Y P,Wang P L,Dreger D. 2009. Role of S waves and Love waves in coseismic permeability enhancement[J]. Geophys Res Lett,36(9):L09404.
    Wang C Y,Manga M. 2010. Hydrologic responses to earthquakes and a general metric[J]. Geofluids,10(1/2):206–216.
    Wang C Y,Manga M,Wang C H,Chen C H. 2012. Transient change in groundwater temperature after earthquakes[J]. Geology,40(2):119–122. doi: 10.1130/G32565.1
    Whiticar M J. 1999. Carbon and hydrogen isotope systematic of bacterial formation and oxidation of methane[J]. Chem Geol,161(1/2/3):291–314. doi: 10.1016/S0009-2541(99)00092-3
    Zhou X C,Chen Z,Cui Y J. 2016. Environmental impact of CO2,Rn,Hg degassing from the rupture zones produced by Wenchuan MS8.0 earthquake in western Sichuan,China[J]. Environ Geochem Health,38(5):1067–1082. doi: 10.1007/s10653-015-9773-1
  • Cited by

    Periodical cited type(7)

    1. 贾东辉,余怀忠,赵彬彬,张涛,刘海洋. 基于加卸载响应比理论的断层氢气异常机理研究. 地震研究. 2025(02): 210-219 .
    2. 廖丽霞,周跃勇,邓聪,黄艳丹. 福建地区地震温泉地球化学观测网点勘选方法及指标探索. 地震. 2024(04): 209-224 .
    3. 方震,黄显良,陶月潮,李伸亮,陶方宇,杨源源,朱厚林,陆栋梁. “霍山窗”地区H_2浓度异常与小震活动关系分析. 地震研究. 2023(02): 237-244 .
    4. 李营,方震,张晨蕾,李继业,鲍志诚,张翔,刘兆飞,周晓成,陈志,杜建国. 地震流体地球化学短临预测研究进展与展望. 地震地质. 2023(03): 593-621 .
    5. 蒋雨函,王子思,刘佳琪,梁卉,周启超,高小其. 中国地震断裂带氢气观测研究现状. 地震地质. 2023(03): 622-637 .
    6. 李继业,胡澜缤,李营,马龙辰,王强,张思萌,李冬妮. 松原M_S5.1地震前断层土壤气H_2、Hg地球化学特征与热红外异常响应研究. 地震工程学报. 2023(04): 933-945 .
    7. 李继业,胡澜缤,康健,李营,王强,孙强,张雁翔. 松辽盆地主要发震构造土壤氢气地球化学特征. 地震. 2023(01): 152-170 .

    Other cited types(0)

Catalog

    Article views (316) PDF downloads (61) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return