Liu T,Dai Z J,Chen S,Fu L. 2022. Earthquake magnitude classification based on deep learning. Acta Seismologica Sinica44(4):656−664. DOI: 10.11939/jass.20210046
Citation: Liu T,Dai Z J,Chen S,Fu L. 2022. Earthquake magnitude classification based on deep learning. Acta Seismologica Sinica44(4):656−664. DOI: 10.11939/jass.20210046

Earthquake magnitude classification based on deep learning

More Information
  • Received Date: March 31, 2021
  • Revised Date: May 30, 2021
  • Available Online: July 13, 2022
  • Published Date: August 15, 2022
  • In order to explore the magnitude information of the seismic acceleration time history recordings, we train a convolutional neural network to classify the seismic recordings based on the magnitude of the earthquakes. Nearly 120 000 earthquake recordings in K-NET and KiK-net are used as samples, and these acceleration time history recordings are used as inputs for model training after information screening and normalization. Taking the magnitude M5.5 as the classification standard, we train a deep learning model of convolutional neural network to classify large and small earthquakes. The results show that the model has an accuracy rate of 93.6% on the training set and 92.3% on the test set, which has a good classification effect. This suggests there are some fundamental differences between large earthquake recordings and small ones. Thus, earthquake magnitude information may be revealed from acceleration time history recordings of earthquakes.
  • 李安,杨建思,彭朝勇,郑钰,刘莎. 2020. 基于样本增强的卷积神经网络震相拾取方法[J]. 地震学报,42(2):163–176.
    Li A,Yang J S,Peng C Y,Zheng Y,Liu S. 2020. Seismic phase identification using the convolutional neural networks based on sample enhancement[J]. Acta Seismologica Sinica,42(2):163–176 (in Chinese).
    隗永刚,杨千里,王婷婷,蒋长胜,边银菊. 2019. 基于深度学习残差网络模型的地震和爆破识别[J]. 地震学报,41(5):646–657. doi: 10.11939/jass.20190030
    Wei Y G,Yang Q L,Wang T T,Jiang C S,Bian Y J. 2019. Earthquake and explosion identification based on Deep Learning residual network model[J]. Acta Seismologica Sinica,41(5):646–657 (in Chinese).
    谢礼立,翟长海. 2003. 最不利设计地震动研究[J]. 地震学报,25(3):250–261. doi: 10.3321/j.issn:0253-3782.2003.03.003
    Xie L L,Zhai C H. 2003. Study on the severest real ground motion for seismic design and analysis[J]. Acta Seismologica Sinica,25(3):250–261 (in Chinese).
    张肇诚,张炜. 2016. 地震预报可行性的科学与实践问题讨论[J]. 地震学报,38(4):564–579. doi: 10.11939/jass.2016.04.004
    Zhang Z C,Zhang W. 2016. Discussion on scientific and practical problems of feasibility of earthquake prediction[J]. Acta Seismologica Sinica,38(4):564–579 (in Chinese).
    周本伟,范莉苹,张龙,李珀任,房立华. 2020. 利用卷积神经网络检测地震的方法与优化[J]. 地震学报,42(6):669–683.
    Zhou B W,Fan L P,Zhang L,Li P R,Fang L H. 2020. Earthquake detection using convolutional neural network and its optimization[J]. Acta Seismologica Sinica,42(6):669–683 (in Chinese).
    朱晓炜. 2011. 强震记录的选择与缩放方法研究[D]. 哈尔滨: 中国地震局工程力学研究所: 4–5.
    Zhu X W. 2011. The Selection and Scaling of Strong Motion Records[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 4–5 (in Chinese).
    Arias A. 1970. A measure of earthquake intensity[G]//Seismic Design for Nuclear Power Plants. Cambridge: Massachusetts Institute of Technology Press: 438–483.
    Baker J W,Cornell C A. 2005. A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon[J]. Earthq Eng Struct Dyn,34(10):1193–1217.
    Baker J W,Cornell C A. 2006a. Correlation of response spectral values for multi-component ground motions[J]. Bull Seismol Soc Am,96(1):215–227.
    Baker J W,Cornell C A. 2006b. Spectral shape,epsilon and record selection[J]. Earthq Eng Struct Dyn,35(9):1077–1095.
    Dysart P S,Pulli J J. 1990. Regional seismic event classification at the NORESS array:Seismological measurements and the use of trained neural networks[J]. Bull Seismol Soc Am,80(6B):1910–1933.
    Goulet C A,Haselton C B,Mitrani-Reiser J,Beck J L,Deierlein G,Porter K A,Stewart J P. 2004. Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building:From seismic hazard to collapse safety and economic losses[J]. Earthq Eng Struct Dyn,36(13):1973–1997.
    Goulet C. 2005. Improving the Characterization of Seismic Hazard for Performance-Based Earthquake Engineering Design[D]. Los Angeles, California: Environmental and Civil Engineering, University of California: 246–268.
    Goulet C A, Haselton C B, Mitrani-Reiser J, Deierlein G, Stewart J P, Taciroglu E. 2006. Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building: Part I: Ground motion selection and structural collapse simulation[C]//8th National Conference on Earthquake Engineering (8NCEE). San Francisco, California: Earthquake Engineering Research Institute: 456–489.
    Huang L Q,Li J,Hao H,Li X B. 2018. Micro-seismic event detection and location in underground mines by using convolutional neural networks (CNN) and deep learning[J]. Tunnel Underground Space Technol,81:265–276. doi: 10.1016/j.tust.2018.07.006
    Jordan M I,Mitchell T M. 2015. Machine learning:Trends,perspectives,and prospects[J]. Science,349(6245):255–260. doi: 10.1126/science.aaa8415
    Krizhevsky A,Sutskever I,Hinton G E. 2017. ImageNet classification with deep convolutional neural networks[J]. Commun ACM,60(6):84–90.
    Murphy K P. 2012. Machine Learning: A Probabilistic Perspective[M]. Cambridge: Massachusetts Institute of Technology Press: 1–16.
    Qian Y M,Bi M X,Tan T,Yu K. 2016. Very deep convolutional neural networks for noise robust speech recognition[J]. IEEE/ACM Trans Audio Speech Language Process,24(12):2263–2276.
    Ross Z E,Yue Y S,Meier M A,Hauksson E,Heaton T H. 2019. Phaselink:A deep learning approach to seismic phase association[J]. J Geophys Res:Solid Earth,124(1):856–869. doi: 10.1029/2018JB016674
    Sainath T N, Mohamed A R, Kingsbury B, Ramabhadran B. 2013. Deep convolutional neural networks for LVCSR[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver B C: IEEE: 8614–8618.
    Sercu T, Puhrsch C, Kingsbury B, LeCun Y. 2016. Very deep multilingual convolutional neural networks for LVCSR[C]//2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Shanghai: IEEE: 4955–4959.
    Tiira T. 1999. Detecting teleseismic events using artificial neural networks[J]. Comput Geosci,25(8):929–938. doi: 10.1016/S0098-3004(99)00056-4
    Tóth L. 2013. Convolutional deep rectifier neural nets for phone recognition[C]//Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech. Lyon: International Speech Communication Association (ISCA): 1722–1726.
    Ursino A,Langer H,Scarfì L,Di Grazia G,Gresta S. 2001. Discrimination of quarry blasts from tectonic microearthquakes in the Hyblean Plateau (Southeastern Sicily)[J]. Ann Geophys,44(4):703–722.
    Wiszniowski J,Plesiewicz B M,Trojanowski J. 2014. Application of real time recurrent neural network for detection of small natural earthquakes in Poland[J]. Acta Geophys,62(3):469–485. doi: 10.2478/s11600-013-0140-2
    Yu D, Xiong W, Droppo J, Stolcke A, Ye G L, Li J Y, Zweig G. 2016. Deep convolutional neural networks with layer-wise context expansion and attention[C]//Proceedings of the Annual Conference of the International Speech Communication Association, Interspeech. Lyon: International Speech Communication Association (ISCA): 17–21.
    Zhang G Y,Wang Z Z,Chen Y K. 2018. Deep learning for seismic lithology prediction[J]. Geophys J Int,215(2):1368–1387.
    Zhu L J,Peng Z G,McClellan J,Li C Y,Yao D D,Li Z F,Fang L H. 2019. Deep learning for seismic phase detection and picking in the aftershock zone of 2008 MW7.9 Wenchuan earthquake[J]. Phys Earth Planet Inter,293:106261.
  • Related Articles

Catalog

    Article views (612) PDF downloads (123) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return