Cui Z F,Zhu S B. 2023. Extended finite element simulation of the influence ofnew-cracks on the propagation of fault spontaneous ruptures across stepover. Acta Seismologica Sinica45(6):959−969. DOI: 10.11939/jass.20210050
Citation: Cui Z F,Zhu S B. 2023. Extended finite element simulation of the influence ofnew-cracks on the propagation of fault spontaneous ruptures across stepover. Acta Seismologica Sinica45(6):959−969. DOI: 10.11939/jass.20210050

Extended finite element simulation of the influence ofnew-cracks on the propagation of fault spontaneous ruptures across stepover

More Information
  • Received Date: April 10, 2021
  • Revised Date: June 11, 2023
  • Available Online: November 15, 2023
  • The step over plays a significant controlling role in the propagation process of seismic rupture. Researchers, based on geological survey results of multiple strike-slip earthquakes globally, have indicated that it is challenging for seismic rupture to cross step over wider than 5 km. Results from numerous numerical simulations also demonstrate that seismic rupture, under conditions such as uniform elastic media and uniform stress fields, cannot extend beyond step over wider than 5 km. However, as research progresses, it has been observed that in few earthquakes, rupture does cross step over wider than 5 km. And research fellows offer various explanations for this phenomenon, including higher stress near step over, changes in material properties due to rock damage, or the presence of concealed faults, among others. Drawing inspiration from previous studies, this paper proposes a novel explanation.  In numerical simulations of the seismic rupture process, it is commonly assumed that rupture occurs only on pre-existing faults. Nevertheless, it is highly likely that new ruptures may generate outside pre-existing faults during seismic events, giving rise to new faults. The rocks near step over are relatively brittle and are more likely to generate new ruptures during seismic events, thereby allowing rupture to cross wider step over. This study employs the extended finite element method to investigate the influence of newly generated ruptures near step over on the seismic rupture propagation process. A step over model with a width of 10 km is established. The newly generated ruptures in the model follow the maximum shear stress failure criterion; when the maximum shear stress exceeds the rock’ s ultimate limit, a new fault is formed in the intact medium, and the direction of the new rupture’ s expansion corresponds to the direction of maximum shear stress. According to the results of rock physical experiments, the model medium’ s maximum shear stress limit is set as 72 MPa.  The simulation results using the extended finite element method in this study show that after an earthquake occurs, the rupture first propagates to the end of the pre-existing fault, and then new ruptures occur near the step over. The expansion direction of the new rupture is nearly perpendicular to the strike of the pre-existing fault, and the fault continues to expand for 1.8 s, with an expansion length of approximately 8.2 km and an expansion velocity of approximately 4 556 m/s. This study also establishes a model that does not consider newly generated ruptures for comparison. Without considering new ruptures, the rupture cannot cross a 10 km wide step over. The paper compares Coulomb stress distribution maps at a specific moment in these two scenarios. According to the Coulomb stress distribution, it is evident that without considering newly generated ruptures, the rupture in this model can only cross step over for the model approximately 5 km wide. The new ruptures alter the geometry of the step over and greatly change the spatial distribution pattern of Coulomb stress, especially by elevating stress levels on the fault, thereby enhancing the ability of seismic rupture to cross step over and allowing it to cross step over 10 km wide. This study contributes to a deeper understanding of the propagation process of seismic rupture across step over, particularly for seismic source process analysis and seismic hazard assessment.

  • 李录贤,王铁军. 2005. 扩展有限元法(XFEM)及其应用[J]. 力学进展,35(1):5–20. doi: 10.3321/j.issn:1000-0992.2005.01.002
    Li L X,Wang T J. 2005. The extended finite element method and its applications:A review[J]. Advances in Mechanics,35(1):5–20 (in Chinese).
    刘书文. 2021. 循环荷载作用下不同强度岩石动力特性实验研究[D]. 衡阳:南华大学:40−49.
    Liu S W. 2021. Experimental Study on Dynamic Characteristics of Rocks With Different Strength under Cyclic Loading[D]. Hengyang:University of South China:40−49 (in Chinese).
    万永革,沈正康,王敏,张祖胜,甘卫军,王庆良,盛书中. 2008. 根据GPS和InSAR数据反演2001年昆仑山口西地震同震破裂分布[J]. 地球物理学报,51(4):1074–1084. doi: 10.3321/j.issn:0001-5733.2008.04.016
    Wan Y G,Shen Z K,Wang M,Zhang Z S,Gan W J,Wang Q L,Sheng S Z. 2008. Coseismic slip distribution of the 2001 Kunlun mountain pass west earthquake constrained using GPS and InSAR data[J]. Chinese Journal of Geophysics,51(4):1074–1084 (in Chinese).
    王鹏,李安贵,蔡美峰,杨同. 2005. 基于随机-模糊理论的岩石抗剪强度参数的确定[J]. 岩石力学与工程学报,24(4):547–552. doi: 10.3321/j.issn:1000-6915.2005.04.001
    Wang P,Li A G,Cai M F,Yang T. 2005. Random-fuzzy monovariant linear regression method for determining the shear strength parameters of rock[J]. Chinese Journal of Rock Mechanics and Engineering,24(4):547–552 (in Chinese).
    袁杰,朱守彪. 2014. 断层阶区对震源破裂传播过程的控制作用研究[J]. 地球物理学报,57(5):1510–1521. doi: 10.6038/cjg20140515
    Yuan J,Zhu S B. 2014. Effects of stepover on rupture propagation[J]. Chinese Journal of Geophysics,57(5):1510–1521 (in Chinese).
    朱守彪,袁杰. 2018. 2008年汶川大地震中北川地区极重震害的物理机制研究[J]. 地球物理学报,61(5):1863–1873. doi: 10.6038/cjg2018M0111
    Zhu S B,Yuan J. 2018. Physical mechanism for extremely serious seismic damage in the Beichuan area caused by the great 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics,61(5):1863–1873 (in Chinese).
    Ando R,Tada T,Yamashita T. 2004. Dynamic evolution of a fault system through interactions between fault segments[J]. J Geophys Res: Solid Earth,109(B5):B05303.
    Andrews D J. 1976. Rupture velocity of plane strain shear cracks[J]. J Geophys Res,81(32):5679–5687. doi: 10.1029/JB081i032p05679
    Barth T J,Sethian J A. 1998. Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains[J]. J Comput Phys,145(1):1–40. doi: 10.1006/jcph.1998.6007
    Bradley B A,Razafindrakoto H N T,Nazer M A. 2017. Strong ground motion observations of engineering interest from the 14 November 2016 MW7.8 Kaikoura,New Zealand earthquake[J]. Bull NZ Soc Earthq Eng,50(2):85–93.
    Brune J N. 2002. Precarious-rock constraints on ground motion from historic and recent earthquakes in southern California[J]. Bull Seismol Soc Am,92(7):2602–2611. doi: 10.1785/0120000606
    Childs C,Holdsworth R E,Jackson C A L,Manzocchi T,Walsh J J,Yielding G. 2017. Introduction to the geometry and growth of normal faults[J]. Geol Soc Lond, Spec Publ,439:1–9. doi: 10.1144/SP439.24
    Chu S S,Lin M L,Huang W C,Nien W T,Liu H C,Chan P C. 2015. Simulation of growth normal fault sandbox tests using the 2D discrete element method[J]. Comput Geosci,74:1–12. doi: 10.1016/j.cageo.2014.10.006
    Cui Z F,Zhu S B. 2022. Effect of real-world frictional strengthening layer near the Earth’s free surface on rupture characteristics with different friction laws:Implication for scarcity of supershear earthquakes[J]. Tectonophysics,837:229447. doi: 10.1016/j.tecto.2022.229447
    Duan B C,Oglesby D D. 2006. Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike-slip faults[J]. J Geophys Res: Solid Earth,111(B5):B05309.
    Finzi Y,Langer S. 2012. Predicting rupture arrests,rupture jumps and cascading earthquakes[J]. J Geophys Res: Solid Earth,117(B12):B12303.
    Gerdes K. 2000. A review of infinite element methods for exterior Helmholtz problems[J]. J Comput Acoust,8(1):43–62. doi: 10.1142/S0218396X00000042
    Harris R A,Day S M. 1993. Dynamics of fault interaction:Parallel strike-slip faults[J]. J Geophys Res: Solid Earth,98(B3):4461–4472. doi: 10.1029/92JB02272
    Harris R A,Day S M. 1999. Dynamic 3D simulations of earthquakes on en echelon faults[J]. Geophys Res Lett,26(14):2089–2092. doi: 10.1029/1999GL900377
    Harris R A,Dolan J F,Hartleb R,Day S M. 2002. The 1999 Izmit,Turkey,earthquake:A 3D dynamic stress transfer model of intra earthquake triggering[J]. Bull Seismol Soc Am,92(1):245–255. doi: 10.1785/0120000825
    Ida Y. 1972. Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy[J]. J Geophys Res,77(20):3796–3805. doi: 10.1029/JB077i020p03796
    Kase Y,Kuge K. 1998. Numerical simulation of spontaneous rupture processes on twonon-coplanar faults:The effect of geometry on fault interaction[J]. Geophys J Int,135(3):911–922. doi: 10.1046/j.1365-246X.1998.00672.x
    Knuepfer P L K. 1989. Implications of the Characteristics of End-Points of Historical Surface Fault Ruptures for the Nature of Fault Segmentation[R]. California:United States Geological Survey:193−228.
    Lin A M,Fu B H,Guo J M,Zeng Q L,Dang G M,He W G,Zhao Y. 2002. Co-seismic strike-slip and rupture length produced by the 2001 MS8.1 Central Kunlun earthquake[J]. Science,296(5575):2015–2017. doi: 10.1126/science.1070879
    Lozos J C. 2010. The Effects of Strike-Slip Fault Stepovers on Rupture Behavior and Ground Motion Distribution[D]. California:University of California:22−67.
    Lozos J C,Oglesby D D,Brune J N,Olsen K B. 2012. Small intermediate fault segments can either aid or hinder rupture propagation at stepovers[J]. Geophys Res Lett,39(18):l18305.
    Magistrale H,Day S. 1999. 3D simulations of multi-segment thrust fault rupture[J]. Geophys Res Lett,26(14):2093–2096. doi: 10.1029/1999GL900401
    Melenk J M,Babuška I. 1996. The partition of unity finite element method:Basic theory and applications[J]. Comput Methods Appl Mech Eng,139(1/2/3/4):289–314.
    Moës N,Gravouil A,Belytschko T. 2002. Non-planar 3D crack growth by the extended finite element and level sets,Part I:Mechanical model[J]. Int J Numer Meth Eng,53(11):2549–2568. doi: 10.1002/nme.429
    Oglesby D. 2008. Rupture termination and jump on parallel offset faults[J]. Bull Seismol Soc Am,98(1):440–447. doi: 10.1785/0120070163
    Osher S,Sethian J A. 1988. Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations[J]. J Comput Phys,79(1):12–49. doi: 10.1016/0021-9991(88)90002-2
    Segall P,Pollard D D. 1980. Mechanics of discontinuous faults[J]. J Geophys Res: Solid Earth,85(B8):4337–4350. doi: 10.1029/JB085iB08p04337
    Sethian J A. 1999. Level Set Methods and Fast Marching Methods:Evolving Interfaces in Computational Geometry,Fluid Mechanics,Computer Vision,and Materials Science[M]. 2nd ed. Cambridge:Cambridge University Press:15−42.
    Sibson R H. 1985. Stopping of earthquake ruptures at dilational fault jogs[J]. Nature,316(6025):248–251. doi: 10.1038/316248a0
    Stolarska M,Chopp D L,Moës N,Belytschko T. 2001. Modelling crack growth by level sets in the extended finite element method[J]. Int J Numer Meth Eng,51(8):943–960. doi: 10.1002/nme.201
    Wald D J,Heaton T H. 1994. Spatial and temporal distribution of slip for the 1992 Landers,California,earthquake[J]. Bull Seismol Soc Am,84(3):668–691. doi: 10.1785/BSSA0840030668
    Wang H,Liu M,Duan B C,Cao J L. 2020. Rupture propagation along stepovers of strike-slip faults:Effects of initial stress and fault geometry[J]. Bull Seismol Soc Am,110(3):1011–1024. doi: 10.1785/0120190233
    Wesnousky S G. 2006. Predicting the endpoints of earthquake ruptures[J]. Nature,444(7117):358–360. doi: 10.1038/nature05275
    Xu X W,Chen W B,Ma W T,Yu G H,Chen G H. 2002. Surface rupture of the Kunlunshan earthquake ( MS8.1),northern Tibetan Plateau,China[J]. Seismol Res Lett,73(6):884–892. doi: 10.1785/gssrl.73.6.884
    Xu X W,Yu G H,Klinger Y,Tapponnier P,van der Woerd J. 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake ( MW7.8),northern Tibetan Plateau,China[J]. J Geophys Res: Solid Earth,111(B5):B05316.
    Yang H F,Yao S L,He B,Newman A V. 2019a. Earthquake rupture dependence on hypocentral location along the Nicoya Peninsula subduction megathrust[J]. Earth Planet Sci Lett,520:10–17. doi: 10.1016/j.jpgl.2019.05.030
    Yang H F,Yao S L,He B,Newman A V,Weng H H. 2019b. Deriving rupture scenarios from interseismic locking distributions along the subduction megathrust[J]. J Geophys Res: Solid Earth,124(10):10376–10392. doi: 10.1029/2019JB017541
    Yao S L,Yang H F. 2020. Rupture dynamics of the 2012 Nicoya MW7.6 earthquake:Evidence for low strength on the megathrust[J]. Geophys Res Lett,47(13):e2020GL087508. doi: 10.1029/2020GL087508
    Zhu S,Zhang P. 2013. Fem simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan earthquake[J]. Tectonophysics,584:64–80. doi: 10.1016/j.tecto.2012.06.024
    Zhu S,Miao M. 2015. How did the 2013 Lushan earthquake ( MS=7.0) trigger its aftershocks? Insights from static Coulomb stress change calculations[J]. Pure Appl Geophy,172(10):2481–2494. doi: 10.1007/s00024-015-1064-3
  • Related Articles

  • Cited by

    Periodical cited type(11)

    1. 戴纳新,胡群,刘彦辉,周福霖,彭林欣. 基于核电厂规范反应谱的时-频人工波合成及楼层反应谱研究. 广西大学学报(自然科学版). 2025(01): 70-82 .
    2. 王伟,许晨夜. 上承式大跨度钢箱无铰拱桥地震响应分析. 黑龙江交通科技. 2024(09): 127-130+137 .
    3. 唐光武,于雯,谢皓宇,刘海明. 近场地震作用下桥梁结构动力响应研究进展. 公路交通技术. 2023(01): 60-68 .
    4. 杨兰兰,傅梓岳,王登峰,XIE Weichau. 基于数字滤波技术拟合规范反应谱的地震动研究. 振动与冲击. 2023(09): 57-67+105 .
    5. 张树翠,夏宏升,张欣刚,姚文莉,齐朝晖,刘大强. 一种内蕴基线漂移校正的人工地震波反应谱拟合方法. 地震工程学报. 2023(05): 1171-1178 .
    6. 杨连,林雄伟,王军. 超高层建筑中考虑相位随机性的基岩地震动时程分析. 粉煤灰综合利用. 2022(01): 39-43+49 .
    7. 高树飞,冯云芬. 基于Newmark滑块位移法的岸坡地震稳定性简易分析方法. 水运工程. 2022(06): 40-48 .
    8. 谢皓宇,潘飞,朱翊洲,郑万山,仉文岗. 核设备设计地震动包络标准PSD的拟合及试验研究. 土木与环境工程学报(中英文). 2021(03): 128-134 .
    9. 谢皓宇,朱翊洲,仉文岗,唐光武,谢永诚. 核电厂设备抗震设计标准功率谱密度的生成方法. 核动力工程. 2021(05): 128-133 .
    10. 别江波,刘星星,刘宏. 某机场高填方边坡的动力特性模拟分析. 工程建设. 2021(09): 13-18 .
    11. 杜迎乾,王之军,周承浩,许汉兵,贾书海. 人工地震波遗传优化生成方法. 工程抗震与加固改造. 2021(06): 149-156+95 .

    Other cited types(0)

Catalog

    Article views (136) PDF downloads (58) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return