Citation: | Zhao D Z,Qu C Y,Shan X J,Zhang G H,Li Y C,Gong W Y,Song X G. 2021. Postseismic deformation observation,mechanism and lithospheric rheology of the central and northern Tibetan Plateau after the 2001 MW7.8 Kunlun earthquake:Insights and challenges. Acta Seismologica Sinica,43(6):804−816. DOI: 10.11939/jass.20210058 |
陈杰,陈宇坤,丁国瑜,田勤俭,王赞军,单新建,任金卫,赵瑞斌,王志才. 2003. 2001年昆仑山口西8.1级地震地表破裂带[J]. 第四纪研究,23(6):629–639. doi: 10.3321/j.issn:1001-7410.2003.06.006
|
Chen J,Chen Y K,Ding G Y,Tian Q J,Wang Z J,Shan X J,Ren J W,Zhao R B,Wang Z C. 2003. Surface rupture zones of the 2001 earthquake MS8.1 west of Kunlun Pass,northern Qinghai-Xizang Plateau[J]. Quaternary Sciences,23(6):629–639 (in Chinese).
|
贺鹏超,王敏,王琪,沈正康. 2018. 基于2001年MW7.8可可西里地震震后形变模拟研究藏北地区岩石圈流变学结构[J]. 地球物理学报,61(2):531–544. doi: 10.6038/cjg2018L0189
|
He P C,Wang M,Wang Q,Shen Z K. 2018. Rheological structure of lithosphere in northern Tibet inferred from postseismic deformation modeling of the 2001 MW7.8 Kokoxili earthquake[J]. Chinese Journal of Geophysics,61(2):531–544 (in Chinese).
|
任金卫,王敏. 2005. GPS观测的2001年昆仑山口西MS8.1级地震地壳变形[J]. 第四纪研究,25(1):34–44. doi: 10.3321/j.issn:1001-7410.2005.01.006
|
Ren J W,Wang M. 2005. GPS measured crustal deformation of the MS8.1 Kunlun earthquake on November 14th 2001 in Qinghai-Xizang plateau[J]. Quaternary Sciences,25(1):34–44 (in Chinese).
|
邵志刚,傅容珊,薛霆虓,黄建华. 2008. 昆仑山MS8.1级地震震后变形场数值模拟与成因机理探讨[J]. 地球物理学报,51(3):805–816. doi: 10.3321/j.issn:0001-5733.2008.03.021
|
Shao Z G,Fu R S,Xue T X,Huang J H. 2008. The numerical simulation and discussion on mechanism of postseismic deformation after Kunlun MS8.1 earthquake[J]. Chinese Journal of Geophysics,51(3):805–816 (in Chinese).
|
谭凯,李杰,王琪. 2007. 大地测量约束下的阿尔泰山岩石圈流变结构[J]. 地球物理学报,50(6):1713–1718. doi: 10.3321/j.issn:0001-5733.2007.06.011
|
Tan K,Li J,Wang Q. 2007. Lithospheric rheological structure constrained by geodetic data in Altay[J]. Chinese Journal of Geophysics,50(6):1713–1718 (in Chinese).
|
张晁军,石耀霖,马丽. 2009. 昆仑山大地震震后形变反映的地壳岩石流变特性[J]. 岩土力学,30(9):2552–2558. doi: 10.3969/j.issn.1000-7598.2009.09.002
|
Zhang C J,Shi Y L,Ma L. 2009. Numerical simulation of crust rheological property reflected by post-seiemic deformations of Kunlun large earthquake[J]. Rock and Soil Mechanics,30(9):2552–2558 (in Chinese).
|
Bürgmann R,Dresen G. 2008. Rheology of the lower crust and upper mantle:Evidence from rock mechanics,geodesy,and field observations[J]. Ann Rev Earth Planet Sci,36:531–567. doi: 10.1146/annurev.earth.36.031207.124326
|
Barbot S,Fialko Y,Bock Y. 2009. Postseismic deformation due to the MW6.0 2004 Parkfield earthquake:Stress-driven creep on a fault with spatially variable rate-and-state friction parameters[J]. J Geophys Res Solid Earth,114(B7):B07405.
|
Bischoff S H,Flesch L M. 2018. Normal faulting and viscous buckling in the Tibetan Plateau induced by a weak lower crust[J]. Nat Commun,9(1):4952. doi: 10.1038/s41467-018-07312-9
|
Clark M K,Royden L H. 2000. Topographic ooze:Building the eastern margin of Tibet by lower crustal flow[J]. Geology,28(8):703–706. doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
|
Copley A,Avouac J P,Wernicke B P. 2011. Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet[J]. Nature,472(7341):79–81. doi: 10.1038/nature09926
|
DeVries P M,Meade B J. 2013. Earthquake cycle deformation in the Tibetan Plateau with a weak mid-crustal layer[J]. J Geophys Res Solid Earth,118(6):3101–3111. doi: 10.1002/jgrb.50209
|
Diao F Q,Xiong X,Wang R J. 2011. Mechanisms of transient postseismic deformation following the 2001 MW7.8 Kunlun (China) earthquake[J]. Pure and Applied Geophysics,168(5):767–779. doi: 10.1007/s00024-010-0154-5
|
Freed A M,Bürgmann R. 2004. Evidence of power-law flow in the Mojave desert mantle[J]. Nature,430(6999):548–551. doi: 10.1038/nature02784
|
Freed A M,Ali S T,Bürgmann R. 2007. Evolution of stress in Southern California for the past 200 years from coseismic,postseismic and interseismic stress changes[J]. Geophys J Int,169(3):1164–1179. doi: 10.1111/j.1365-246X.2007.03391.x
|
Garthwaite M C,Wang H,Wright T J. 2013. Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR[J]. J Geophys Res: Solid Earth,118(9):5071–5083. doi: 10.1002/jgrb.50348
|
Hilley G E,Bürgmann R,Zhang P Z,Molnar P. 2005. Bayesian inference of plastosphere viscosities near the Kunlun fault,northern Tibet[J]. Geophys Res Lett,32(1):L01302.
|
Hilley G E,Johnson K M,Wang M,Shen Z K,Bürgmann R. 2009. Earthquake-cycle deformation and fault slip rates in northern Tibet[J]. Geology,37(1):31–34. doi: 10.1130/G25157A.1
|
Hsu Y J,Simons M,Avouac J P,Galetzka J,Sieh K,Chlieh M,Natawidjaja D,Prawirodirdjo L,Bock Y. 2006. Frictional afterslip following the 2005 Nias-Simeulue earthquake,Sumatra[J]. Science,312(5782):1921–1926. doi: 10.1126/science.1126960
|
Hussain E,Wright T J,Walters R J,Bekaert D P S,Lloyd R,Hooper A. 2018. Constant strain accumulation rate between major earthquakes on the North Anatolian fault[J]. Nat Commun,9(1):1392. doi: 10.1038/s41467-018-03739-2
|
Liu S Z,Xu X W,Klinger Y,Nocquet J M,Chen G H,Yu G H,Jónsson S. 2019. Lower crustal heterogeneity beneath the northern Tibetan Plateau constrained by GPS measurements following the 2001 MW7.8 Kokoxili earthquake[J]. J Geophys Res: Solid Earth,124(11):11992–12022. doi: 10.1029/2019JB017732
|
Ryder I,Bürgmann R,Pollitz F. 2011. Lower crustal relaxation beneath the Tibetan Plateau and Qaidam Basin following the 2001 Kokoxili earthquake[J]. Geophys J Int,187(2):613–630. doi: 10.1111/j.1365-246X.2011.05179.x
|
Vernant P. 2015. What can we learn from 20 years of interseismic GPS measurements across strike-slip faults?[J]. Tectonophysics,644-645:22–39. doi: 10.1016/j.tecto.2015.01.013
|
Wen Y M,Li Z H,Xu C J,Ryder I,Bürgmann R. 2012. Postseismic motion after the 2001 MW7.8 Kokoxili earthquake in Tibet observed by InSAR time series[J]. J Geophys Res:Solid Earth,117(B8):B08405.
|
Wessel P, Smith W H F. 1998. New, improved version of generic mapping tools released. Eos Trans Am Geophys Union, 79(47): 579.
|
Zhao B,Huang Y,Zhang C H,Wang W,Tan K,Du R N L. 2015. Crustal deformation on the Chinese mainland during 1998-2014 based on GPS data[J]. Geod Geodynam,6(1):7–15. doi: 10.1016/j.geog.2014.12.006
|
Zhao D Z,Qu C Y,Shan X J,Bürgmann R,Gong W Y,Zhang G H. 2018a. Spatiotemporal evolution of postseismic deformation following the 2001 MW7.8 Kokoxili,China,earthquake from 7 years of InSAR observations[J]. Remote Sens,10(12):1988. doi: 10.3390/rs10121988
|
Zhao D Z,Qu C Y,Shan X J,Zuo R H,Liu Y H,Gong W Y,Zhang G H. 2018b. Broadscale postseismic deformation and lower crustal relaxation in the central Bayankala Block (central Tibetan Plateau) observed using InSAR data[J]. J Asian Earth Sci,154:26–41. doi: 10.1016/j.jseaes.2017.12.016
|
Zhao D Z, Qu C Y, Bürgmann R, Gong W Y, Shan X J. 2021. Relaxation of Tibetan lower crust and afterslip driven by the 2001 MW7.8 Kokoxili, China, earthquake constrained by a decade of geodetic measurements[J]. J Geophys Res: Solid Earth, e2020JB021314.
|