Processing math: 0%
Peng C Y,Zheng Y,Xu Z Q,Jiang X D,Yang J S. 2021. Construction and verification of onsite ground motion prediction models for seismic intensity instrument. Acta Seismologica Sinica43(5):643−655. DOI: 10.11939/jass.20210075
Citation: Peng C Y,Zheng Y,Xu Z Q,Jiang X D,Yang J S. 2021. Construction and verification of onsite ground motion prediction models for seismic intensity instrument. Acta Seismologica Sinica43(5):643−655. DOI: 10.11939/jass.20210075

Construction and verification of onsite ground motion prediction models for seismic intensity instrument

More Information
  • Received Date: May 18, 2021
  • Revised Date: July 14, 2021
  • Available Online: September 08, 2021
  • Published Date: September 29, 2021
  • Using the initial P-wave early warning parameters to construct onsite ground motion prediction models, so as to quickly release an alarm message when it reaches the predefined threshold, is a key issue of the onsite earthquake early warning system, which is directly related to the accuracy and timeliness of the early warning information. For micro-electro-mechanical-systems-based seismic intensity instrument with poor data quality, the obtained displacement record after two integrations has a large deviation, which will lead to more false and missed alarms. Therefore, for waveforms recorded by seismic intensity instrument, in this paper, we adopted Butterworth filters of different orders (1−4) to build up several onsite ground motion prediction models based on the P-wave 3 seconds data and the whole P-wave window. These models are the relationships between displacement amplitude PD and peak ground velocity PGV, PD and peak ground acceleration PGA, velocity amplitude PV and PGV, PV and PGA, acceleration amplitude PA and PGV, PA and PGA, respectively. The models are then verified using the collected micro-electro-mechanical-systems-based seismic event records from the Sichuan-Yunnan Demonstration Early Warning Network. The results show that for the seismic intensity instrument records, the two optimal onsite ground motion prediction models are the relationship between PV and PGV and the one between PA and PGA obtained by the first-order Butterworth filter processing and derived from the whole P-wave window. In specific applications, two or more statistical relationships should be simultaneously adopted to predict onsite ground motion, and observed ground motion values should be used as additional judgment conditions to reduce the probability of false and missed alarms.
  • 国家市场监督管理总局, 国家标准化管理委员会. 2020. GB/T1774—2020中国地震烈度表[S/OL].[2021-01-05].http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=6FD8F9071FAC980D5B2A636A9EA79DE9.
    State Administration for Market Regulation, Standardization Administration. 2020. GB/T 1774−2020: The Chinese Seismic Intensity Scale[S/OL].[2021-01-05].http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=6FD8F9071FAC980D5B2A636A9EA79DE9 (in Chinese).
    马强. 2008. 地震预警技术研究及应用[D]. 哈尔滨: 中国地震局工程力学研究所: 1–9.
    Ma Q. 2008. Study and Application on Earthquake Early Warning[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1–9 (in Chinese).
    彭朝勇,杨建思. 2019. 利用P波参数阈值实时估算地震预警潜在破坏区范围[J]. 地震学报,41(3):354–365.
    Peng C Y,Yang J S. 2019. Real-time estimation of potentially damaged zone for earthquake early warning based on thresholds of P-wave parameters[J]. Acta Seismologica Sinica,41(3):354–365 (in Chinese).
    彭朝勇,杨建思,薛兵,陈阳,朱小毅. 2013. 基于汶川主震及余震的预警参数与震级相关性研究[J]. 地球物理学报,56(10):3404–3415. doi: 10.6038/cjg20131016
    Peng C Y,Yang J S,Xue B,Chen Y,Zhu X Y. 2013. Research on correlation between early-warning parameters and magnitude for the Wenchuan earthquake and its aftershocks[J]. Chinese Journal of Geophysics,56(10):3404–3415 (in Chinese).
    宋晋东,教聪聪,李山有,侯宝瑞. 2018a. 基于地震P波双参数阈值的高速铁路Ⅰ级地震警报预测方法[J]. 中国铁道科学,39(1):138–144.
    Song J D,Jiao C C,Li S Y,Hou B R. 2018a. Prediction method of first-level earthquake warning for high speed railway based on two-parameter threshold of seismic P-wave[J]. China Railway Science,39(1):138–144 (in Chinese).
    宋晋东,教聪聪,李山有,侯宝瑞,汪源. 2018b. 一种基于地震早期辐射P波能量的高速铁路Ⅰ级地震警报预测方法[J]. 振动与冲击,37(19):14–22.
    Song J D,Jiao C C,Li S Y,Hou B R,Wang Y. 2018b. A predicting method for magnitude 1 earthquake alarm of high-speed railways based on seismic early radiated P-wave energy[J]. Journal of Vibration and Shock,37(19):14–22 (in Chinese).
    张红才,金星,王士成,李军. 2017. 烈度仪记录与强震及测震记录的对比分析:以2015年河北昌黎ML4.5地震为例[J]. 地震学报,39(2):273–285. doi: 10.11939/jass.2017.02.010
    Zhang H C,Jin X,Wang S C,Li J. 2017. Comparative analyses of records by seismic intensity instrument with strong ground motion records and seismograph stations records:Taking the ML4.5 Changli earthquake of Hebei Province for an example[J]. Acta Seismologica Sinica,39(2):273–285 (in Chinese).
    Allen R M,Melgar D. 2019. Earthquake early warning:Advances,scientific challenges,and societal needs[J]. Annu Rev Earth Planet Sci,47:361–388. doi: 10.1146/annurev-earth-053018-060457
    Bormann P,Liu R F,Ren X,Gutdeutsch R,Kaiser D,Castellaro S. 2007. Chinese National Network Magnitudes,their relation to NEIC magnitudes,and recommendations for new IASPEI magnitude standards[J]. Bull Seismol Soc Am,97(1B):114–127. doi: 10.1785/0120060078
    Colombelli S,Amoroso O,Zollo A,Kanamori H. 2012a. Test of a threshold-based earthquake early-warning method using Japanese data[J]. Bull Seismol Soc Am,102(3):1266–1275. doi: 10.1785/0120110149
    Colombelli S,Zollo A,Festa G,Kanamori H. 2012b. Early magnitude and potential damage zone estimates for the great MW9 Tohoku-Oki earthquake[J]. Geophys Res Lett,39(22):L22306.
    Cuéllar A, Espinosa-Aranda J M, Suárez R, Ibarrola G, Uribe A, Rodríguez F H, Islas R, Rodríguez G M, García A, Frontana B. 2014. The Mexican seismic alert system (SASMEX): Its alert signals, broadcast results and performance during the M7.4 Punta Maldonado earthquake of March 20th, 2012[G]// Early Warning for Geological Disasters. Berlin, Germany: Springer: 71-87.
    Evans J R,Allen R M,Chung A I,Cochran E S,Guy R,Hellweg M,Lawrence J F. 2014. Performance of several low-cost accelerometers[J]. Seismol Res Lett,85(1):147–158. doi: 10.1785/0220130091
    Fujinawa Y,Noda Y. 2013. Japan’s earthquake early warning system on 11 March 2011:Performance,shortcomings,and changes[J]. Earthq Spectra,29(1S):341–368.
    Hsu T Y,Wang H H,Lin P Y,Lin C M,Kuo C H,Wen K L. 2016. Performance of the NCREE’s on-site warning system during the 5 February 2016 MW6.53 Meinong earthquake[J]. Geophys Res Lett,43(17):8954–8959. doi: 10.1002/2016GL069372
    National Research Institute of Earth Science and Disaster Resilience. 2019. Strong-motion seismograph networks: NIED K-NET, KiK-net[DB/OL]. [2020−02−20]. http://www.kyoshin.bosai.go.jp/. doi: 10.17598/NIED.0004.
    Peng C Y,Yang J S,Xue B,Zhu X Y,Chen Y. 2014. Exploring the feasibility of earthquake early warning using records of the 2008 Wenchuan earthquake and its aftershocks[J]. Soil Dyn Earthq Eng,57:86–93. doi: 10.1016/j.soildyn.2013.11.005
    Peng C Y,Yang J S,Zheng Y,Zhu X Y,Xu Z Q,Chen Y. 2017a. New τc regression relationship derived from all P wave time windows for rapid magnitude estimation[J]. Geophys Res Lett,44(4):1724–1731.
    Peng C Y,Chen Y,Chen Q S,Yang J S,Wang H T,Zhu X Y,Xu Z Q,Zheng Y. 2017b. A new type of tri-axial accelerometers with high dynamic range MEMS for earthquake early warning[J]. Comput Geosci,100:179–187. doi: 10.1016/j.cageo.2017.01.001
    Peng C Y,Jiang P,Chen Q S,Ma Q,Yang J S. 2019. Performance evaluation of a dense MEMS-based seismic sensor array deployed in the Sichuan-Yunnan border region for earthquake early warning[J]. Micromachines,10(11):735. doi: 10.3390/mi10110735
    Peng C Y,Ma Q,Jiang P,Huang W H,Yang D K,Peng H S,Chen L,Yang J S. 2020. Performance of a hybrid demonstration earthquake early warning system in the Sichuan-Yunnan border region[J]. Seismol Res Lett,91:835–846. doi: 10.1785/0220190101
    Peng C Y,Jiang P,Ma Q,Wu P,Su J R,Zheng Y,Yang J S. 2021. Performance evaluation of an earthquake early warning system in the 2019−2020 M6.0 Changning,Sichuan,China,seismic sequence[J]. Front Earth Sci,9:699941. doi: 10.3389/feart.2021.699941
    Shieh J T,Wu Y M,Allen R M. 2008. A comparison of τc and τPmax for magnitude estimation in earthquake early warning[J]. Geophys Res Lett,35(20):L20301. doi: 10.1029/2008GL035611
    Tsuboi C. 1954. Determination of the Gutenberg-Richter’s magnitude of earthquakes occurring in and near Japan[J]. J Seismol Soc Jpn,7(3):185–193.
    Wang W T,Ni S D,Chen Y,Kanamori H. 2009. Magnitude estimation for early warning applications using the initial part of P waves:A case study on the 2008 Wenchuan sequence[J]. Geophys Res Lett,36(16):L16305. doi: 10.1029/2009GL038678
    Wang Y,Colombelli S,Zollo A,Song J D,Li S Y. 2021. Source parameters of moderate-to-large Chinese earthquakes from the time evolution of P-wave peak displacement on strong motion recordings[J]. Front Earth Sci,9:616229. doi: 10.3389/feart.2021.616229
    Wu Y M,Kanamori H. 2005. Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves[J]. Bull Seismol Soc Am,95(3):1181–1185. doi: 10.1785/0120040193
    Wu Y M,Kanamori H. 2008. Development of an earthquake early warning system using real-time strong motion signals[J]. Sensors,8(1):1–9. doi: 10.3390/s8010001
    Zhu J B,Li S Y,Song J D,Wang Y. 2021. Magnitude estimation for earthquake early warning using a deep convolutional neural network[J]. Front Earth Sci,9:653226. doi: 10.3389/feart.2021.653226
    Zollo A,Amoroso O,Lancieri M,Wu Y M,Kanamori H. 2010. A threshold-based earthquake early warning using dense accelerometer networks[J]. Geophys J Int,183(2):963–974. doi: 10.1111/j.1365-246X.2010.04765.x

Catalog

    Article views (601) PDF downloads (196) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return