Zhao M,Guo M Y,Zhong Z L,Du X L. 2022. Variation law of optimal seismic peak intensity measures for underground structures with burial depth. Acta Seismologica Sinica44(1):15−25. DOI: 10.11939/jass.20210094
Citation: Zhao M,Guo M Y,Zhong Z L,Du X L. 2022. Variation law of optimal seismic peak intensity measures for underground structures with burial depth. Acta Seismologica Sinica44(1):15−25. DOI: 10.11939/jass.20210094

Variation law of optimal seismic peak intensity measures for underground structures with burial depth

More Information
  • Received Date: May 30, 2021
  • Revised Date: July 14, 2021
  • Available Online: January 12, 2022
  • Published Date: March 17, 2022
  • Determination of a reasonable seismic intensity measure is very important for structural seismic performance evaluation. The seismic response of the underground structure is closely related to the deformation of the engineering site under earthquake excitation due to the constraint of the surrounding rock and soil. Besides, the burial depth of the underground structure also has critical effects on its seismic response. Therefore it is of great significance to investigate the variation of the optimal seismic intensity measure with burial depths of underground structures in engineering sites. In this paper, one-dimensional equivalent-linear earthquake site response analyses was performed by using 50 actual seismic records as the input motions to estimate the seismic response of homogeneous half-space sites and layered half-space sites. For the convenience of comparison among different numerical results, the engineering bedrock is assumed to be a linear elastic medium herein and the earthquake ground motions are input in the engineering bedrock at the same burial depth of 200 m from the ground surface. Based on the proficiency of the results, the optimal peak seismic intensity measures (peak ground acceleration PGA, peak ground velocity PGV, peak ground displacement PGD) varying with the burial depth of the site were investigated herein. The numerical results show that for the selected two types of sites, the optimal peak seismic intensity measure changes with the burial depth of the site. When the burial depth is small, the proficiency of PGA is the best. With the increase of the burial depth, the optimal proficiency changes from PGA to PGV. Moreover, although the critical burial depth corresponding to the transition from PGA to PGV are different for different sites, it exhibits a linear correlation with shear wave velocity of the engineering sites.
  • 陈健云,李静,韩进财,徐强. 2017. 地震动强度指标与框架结构响应的相关性研究[J]. 振动与冲击,36(3):105–112.
    Chen J Y,Li J,Han J C,Xu Q. 2017. Correlation between ground motion intensity indexes and seismic responses of frame structures[J]. Journal of Vibration and Shock,36(3):105–112 (in Chinese).
    崔光耀,伍修刚,王明年,林国进. 2017. 汶川8.0级大地震公路隧道震害调查与震害特征[J]. 现代隧道技术,54(2):9–16.
    Cui G Y,Wu X G,Wang M N,Lin G J. 2017. Earthquake damages and characteristics of highway tunnels in the 8.0-magnitude Wenchuan earthquake[J]. Modern Tunnelling Technology,54(2):9–16 (in Chinese).
    董正方,朱红云,蔡宝占,闫超. 2017. 不同埋深处土质场地地下结构地震内力变化规律[J]. 工程抗震与加固改造,39(5):143–148.
    Dong Z F,Zhu H Y,Cai B Z,Yan C. 2017. Law of internal force changes for understructures in soil site with different depth under earthquake[J]. Earthquake Resistant Engineering and Retrofitting,39(5):143–148 (in Chinese).
    耿方方,丁幼亮,谢辉,李爱群,宋建永,李万恒,王玉倩. 2013. 近断层地震动作用下长周期结构的地震动强度指标[J]. 东南大学学报(自然科学版),43(1):203–208.
    Geng F F,Ding Y L,Xie H,Li A Q,Song J Y,Li W H,Wang Y Q. 2013. Ground motion intensity indices for long period structures subjected to near-fault ground motion[J]. Journal of Southeast University (Natural Science Edition),43(1):203–208 (in Chinese).
    李长青,戚承志,罗健. 2011. 地下结构埋深对结构自身响应的影响分析[J]. 防灾减灾工程学报,31(增刊1):167–172.
    Li C Q,Qi C Z,Luo J. 2011. Study of influence of buried depth on seismic response of underground structures[J]. Journal of Disaster Prevention and Mitigation Engineering,31(S1):167–172 (in Chinese).
    李雪红,李晔暄,吴迪,徐秀丽,李枝军. 2014. 地震动强度指标与结构地震响应的相关性研究[J]. 振动与冲击,33(23):184–189.
    Li X H,Li Y X,Wu D,Xu X L,Li Z J. 2014. Correlation between ground motion intensity and structural seismic response[J]. Journal of Vibration and Shock,33(23):184–189 (in Chinese).
    卢啸,陆新征,叶列平,李梦珂. 2014. 适用于超高层建筑的改进地震动强度指标[J]. 建筑结构学报,35(2):15–21.
    Lu X,Lu X Z,Ye L P,Li M K. 2014. Development of an improved ground motion intensity measure for super high-rise buildings[J]. Journal of Building Structures,35(2):15–21 (in Chinese).
    于天昊. 2016. 近场地震动下适于单层网壳结构响应评估的地震动强度参数[D]. 天津: 天津大学: 1–92.
    Yu T H. 2016. Ground Motion Intensity Measures for the Evaluation of Effects of Pulse-Type Ground Motions on the Response of Single-Layer Reticulated Shells[D]. Tianjin: Tianjin University: 1–92 (in Chinese).
    于翔. 2002. 地下建筑结构应充分考虑抗震问题:1995年阪神地震破坏的启示[J]. 工程抗震,(4):17–20.
    Yu X. 2002. Anti-seismic action should be sufficiently considered in constructing metro:Illumine of the 1995 Hyogoken-Nanbu earthquake[J]. Earthquake Resistant Engineering,(4):17–20 (in Chinese).
    于晓辉. 2012. 钢筋混凝土框架结构的概率地震易损性与风险分析[D]. 哈尔滨: 哈尔滨工业大学: 61–90.
    Yu X H. 2012. Probabilistic Seismic Fragility and Risk Analysis of Reinforced Concrete Frame Structures[D]. Harbin: Harbin Institute of Technology: 61–90 (in Chinese).
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 2010. GB 50011—2010 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社: 18–21.
    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2010. GB 50011−2010 Code for Seismic Design of Buildings[S]. Beijing: China Architecture & Building Press: 18–21 (in Chinese).
    钟紫蓝,申轶尧,甄立斌,张成明,赵密,杜修力. 2020. 地震动强度参数与地铁车站结构动力响应指标分析[J]. 岩土工程学报,42(3):486–494.
    Zhong Z L,Shen Y Y,Zhen L B,Zhang C M,Zhao M,Du X L. 2020. Ground motion intensity measures and dynamic response indexes of metro station structures[J]. Chinese Journal of Geotechnical Engineering,42(3):486–494 (in Chinese).
    左占宣,李爽,翟长海,谢礼立. 2019. 结构周期延长对倒塌分析中地震动强度指标选择的影响[J]. 建筑结构学报,40(5):141–148.
    Zuo Z X,Li S,Zhai C H,Xie L L. 2019. Influence of structural period elongation on ground motion intensity index in collapse analysis[J]. Journal of Building Structures,40(5):141–148 (in Chinese).
    Akkar S,Özen Ö. 2005. Effect of peak ground velocity on deformation demands for SDOF systems[J]. Earthq Eng Struct Dyn,34(13):1551–1571. doi: 10.1002/eqe.492
    An X H,Shawky A A,Maekawa K. 1997. The collapse mechanism of a subway station during the great Hanshin earthquake[J]. Cem Concr Compos,19(3):241–257. doi: 10.1016/S0958-9465(97)00014-0
    Bray J D,Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthq Eng,24(11):815–828. doi: 10.1016/j.soildyn.2004.05.001
    Chen Z Y,Wei J S. 2013. Correlation between ground motion parameters and lining damage indices for mountain tunnels[J]. Nat Hazards,65(3):1683–1702. doi: 10.1007/s11069-012-0437-5
    Cornell C A,Jalayer F,Hamburger R O,Foutch D A. 2002. Probabilistic basis for 2000 SAC Federal Emergency Management Agency steel moment frame guidelines[J]. J Struct Eng,128(4):526–533. doi: 10.1061/(ASCE)0733-9445(2002)128:4(526)
    Dávalos H,Miranda E. 2019. Evaluation of bias on the probability of collapse from amplitude scaling using spectral-shape-matched records[J]. Earthq Eng Struct Dyn,48(8):970–986. doi: 10.1002/eqe.3172
    FEMA. 2009. Quantification of Building Seismic Performance Factors: FEMA P695[R]. Washington: Federal Emergency Management Agency: 280–281.
    Hashash Y M A,Hook J J,Schmidt B,Yao J I C. 2001. Seismic design and analysis of underground structures[J]. Tunn Undergr Space Technol,16(4):247–293. doi: 10.1016/S0886-7798(01)00051-7
    Liu T,Chen Z Y,Yuan Y,Shao X Y. 2017. Fragility analysis of a subway station structure by incremental dynamic analysis[J]. Adv Struct Eng,20(7):1111–1124. doi: 10.1177/1369433216671319
    Luco N,Cornell C A. 2007. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions[J]. Earthq Spectra,23(2):357–392. doi: 10.1193/1.2723158
    Nau J M,Hall W J. 1984. Scaling methods for earthquake response spectra[J]. J Struct Eng,110(7):1533–1548. doi: 10.1061/(ASCE)0733-9445(1984)110:7(1533)
    Padgett J E,Nielson B G,DesRoches R. 2008. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios[J]. Earthq Eng Struct Dyn,37(5):711–725. doi: 10.1002/eqe.782
    Pitilakis K,Tsinidis G,Leanza A,Maugeri M. 2014. Seismic behaviour of circular tunnels accounting for above ground structures interaction effects[J]. Soil Dyn Earthq Eng,67:1–15. doi: 10.1016/j.soildyn.2014.08.009
    Riddell R. 2007. On ground motion intensity indices[J]. Earthq Spectra,23(1):147–173. doi: 10.1193/1.2424748
    Scawthorn C,O’Rourke T D,Blackburn F T. 2006. The 1906 San Francisco earthquake and fire:Enduring lessons for fire protection and water supply[J]. Earthq Spectra,22(S2):135–158.
    Wang W L,Wang T T,Su J J,Lin C H,Seng C R,Huang T H. 2001. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake[J]. Tunn Undergr Space Technol,16(3):133–150. doi: 10.1016/S0886-7798(01)00047-5
    Yang C T,Xie L L,Li A Q,Jia J B,Zeng D M. 2019. Ground motion intensity measures for seismically isolated RC tall buildings[J]. Soil Dyn Earthq Eng,125:105727. doi: 10.1016/j.soildyn.2019.105727
    Yang D X,Pan J W,Li G. 2009. Non-structure-specific intensity measure parameters and characteristic period of near-fault ground motions[J]. Earthq Eng Struct Dyn,38(11):1257–1280. doi: 10.1002/eqe.889
  • Related Articles

  • Cited by

    Periodical cited type(1)

    1. 罗全波,陈学良,高孟潭,李宗超,李铁飞. 集集地震近断层速度脉冲分析. 国际地震动态. 2019(10): 2-11 .

    Other cited types(5)

Catalog

    Article views (320) PDF downloads (52) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return