Lei X L,Wang Z W,Ma S L,He C R. 2021. A preliminary study on the characteristics and mechanism of the May 2021 MS6.4 Yangbi earthquake sequence,Yunnan,China. Acta Seismologica Sinica43(3):261−286. DOI: 10.11939/jass.20210100
Citation: Lei X L,Wang Z W,Ma S L,He C R. 2021. A preliminary study on the characteristics and mechanism of the May 2021 MS6.4 Yangbi earthquake sequence,Yunnan,China. Acta Seismologica Sinica43(3):261−286. DOI: 10.11939/jass.20210100

A preliminary study on the characteristics and mechanism of the May 2021 MS6.4 Yangbi earthquake sequence,Yunnan,China

More Information
  • Received Date: May 25, 2021
  • Revised Date: May 30, 2021
  • Available Online: July 14, 2021
  • Published Date: May 14, 2021
  • The MS6.4 (MW6.1) earthquake occurred on May 21, 2021 in Yangbi county, Yunnan, China is the main shock of a typical foreshock-mainshock-aftershock sequence. This research carried out a preliminary study focusing on tectonic background, double-difference hypocenter location, moment tensor and rupture directivity of major earthquakes, stress field and fault slip-tendency, as well as tidal effect. According to the results of moment tensor inversion and rupture directivity of the main shock and the distribution of aftershocks, it is determined that the source faults of the main shock has strike 137°, dip 75°, rake −167°. The centroid depth of the main shock is 6.0 km, and the fault ruptured unilaterally toward the south-east direction, showing pure double-couple mechanism with dominant right-lateral strike-slip and minor normal components. Relocated hypocenters show that the Yangbi earthquake sequence is located near, but significantly departs from the well-known Qiaohou-Weishan fault in the northern segment of the Honghe fault zone, demonstrating an unmapped NW-trending strike-slip fault (we named “Yangbi fault” in this paper) with some small scale conjugate faults of NE-trending. The hypocenters are distributed along the NW-trending major fault, but also exhibit clusters along the NE-trending faults. The strongest foreshocks and most of the major aftershocks were caused by rupture of NE-trending source faults. All major earthquakes show a unilateral rupture directivity. We have obtained reliable mechanism solutions of more than 20 events with MW>3.4 in the focused area (within 15 km of the center of the Yangbi earthquake sequence), which enabled us to be able to invert the mean stress field in the area. The principal stress shape ratio φ=(σ2σ3)/(σ1σ3) is 0.46±0.17; the (azimuth, plunge) of the maximum, intermediate, and minimum principal stress axes are (188.0°±9.0°, 12.4°±7.0°), (50°±45°, 72.1°±11.3°), and (280.3°±7.0°, 10.4°±12.0°), respectively. Through theoretical tidal strain and stress analysis, it is found that this seismic sequence is significantly affected by tidal modulation. The first major earthquakes of the foreshock clusters that began at 18:00−20:00 on May 18 and 19 and the main shock occurred near the peaks of tidal volumetric strain and Coulomb failure stress. Based on the focal mechanism solutions of the main earthquakes, the distributions of foreshocks and aftershocks, the facts of tidal modulation, the rupture directivity of major earthquakes, fault slip-tendency analysis, and the results of previous studies on similar seismic activities in northwestern Yunnan, we preliminarily suggest that the Yangbi earthquake sequence is significantly affected by the action of deep fluids. The first foreshock activity climax at 18:00 on 18 May, in a tensile fault step (should be permeable channel) area of the NW-trending fault, likely initiated along NE-trending faults (greater slip-tendency) by deep overpressure fluid, and then migrated to the northwest. The second climax of foreshock activity that began at night on the 19 May was concentrated near the hypocenter of the main shock. The triggering of these foreshocks and the action of deep fluid jointly promoted the activity of the NW-trending fault (smaller slip-tendency), but the main shock was mainly promoted by the action of deep fluid.
  • 常祖峰,常昊,臧阳,代博洋. 2016. 维西—乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报,22(3):517–530. doi: 10.3969/j.issn.1006-6616.2016.03.009
    Chang Z F,Chang H,Zang Y,Dai B Y. 2016. Recent active features of Weixi-Qiaohou fault and its relationship with the Honghe fault[J]. Journal of Geomechanics,22(3):517–530 (in Chinese).
    邓起东, 冉勇康, 杨晓平, 闵伟, 楚全芝. 2007. 中国活动构造图1:400万[M]. 北京: 地震出版社: 1.
    Deng Q D, Ran R K, Yang X P, Min W, Chu Q Z. 2007. Active Structure Map of China[M]. Beijing: Seismological Press: 1 (in Chinese).
    胡家富,苏有锦,朱雄关,陈赟. 2003. 云南的地壳S波速度与泊松比结构及其意义[J]. 中国科学:D辑,(8):714–722.
    Hu J F,Su Y J,Zhu X G,Chen Y. 2005. S-wave velocity and Poisson’s ratio structure of crust in Yunnan and its implication[J]. Science in China:Series D,48(2):210–218. doi: 10.1360/03yd0062
    雷兴林,苏金蓉,王志伟. 2020. 四川盆地南部持续增长的地震活动及其与工业注水活动的关联[J]. 中国科学:地球科学,50(11):1505–1532. doi: 10.1360/N072020-0045
    Lei X L,Su J R,Wang Z W. 2020. Growing seismicity in the Sichuan basin and its association with industrial activities[J]. Science China Earth Sciences,63(11):1633–1660. doi: 10.1007/s11430-020-9646-x
    林元武. 1993. 红河断裂带北段温泉水循环深度与地震活动性的关系探讨[J]. 地震地质,15(3):193–206.
    Lin Y W. 1993. A discussion on the relation of circulation depth of spring water to seismic activity on the northern segment of the Honghe fault zone[J]. Seismology and Geology,15(3):193–206 (in Chinese).
    上官志冠. 1988. 滇西实验场区主要活动断裂地球化学特征[J]. 地震地质,10(4):134–142.
    Shangguan Z G. 1988. Geochemical characteristics of the main active faults in Western Yunnan Earthquake Prediction Test Site[J]. Seismology and Geology,10(4):134–142 (in Chinese).
    苏广利,畅柳,许明元. 2018. 基于精密水准的云南地区垂直运动特征分析[J]. 地震地质,40(6):1380–1389.
    Su G L,Chang L,Xu M Y. 2018. The analysis of vertical motion characteristics in Yunnan area based on precise leveling[J]. Seismology and Geology,40(6):1380–1389 (in Chinese).
    孙庆山,李乐. 2020. 利用重复微震估算红河断裂带北段深部滑动速率[J]. 地球物理学报,63(2):478–491. doi: 10.6038/cjg2020N0026
    Sun Q S,Li L. 2020. Deep slip rates along the northern segment of the Red River fault zone estimated from repeating microearthquakes[J]. Chinese Journal of Geophysics,63(2):478–491 (in Chinese).
    向宏发,虢顺民,冉勇康,李祥根,张靖,陈铁牛,张国伟. 1986. 滇西北地区的现代构造应力场[J]. 地震地质,8(1):15–23.
    Xiang H F,Guo S M,Ran Y K,Li X G,Zhang J,Chen T N,Zhang G W. 1986. Recent tectonic stress field in the northwest of the Yunnan Province[J]. Seismology and Geology,8(1):15–23 (in Chinese).
    谢富仁,刘光勋,梁海庆. 1994. 滇西北及邻区现代构造应力场[J]. 地震地质,16(4):329–338.
    Xie F R,Liu G X,Liang H Q. 1994. Recent tectonic stress field in northwest Yunnan Province and its adjacent areas[J]. Seismology and Geology,16(4):329–338 (in Chinese).
    颜鹍,李如陶,李四海. 1997. 滇西地震预报实验场区温泉地球化学与断裂活动的关系[J]. 大地构造与成矿学,21(2):129–136.
    Yan K,Li R T,Li S H. 1997. The relationship between tectonic activities and geochemistry of hot springs in Western Yunnan Earthquake Study Test Site[J]. Geotectonica et Metallogenia,21(2):129–136 (in Chinese).
    赵小艳,付虹. 2014. 2013年洱源MS5.5和MS5.0地震发震构造识别[J]. 地震学报,36(4):640–650.
    Zhao X Y,Fu H. 2014. Seismogenic structure identification of the 2013 Eryuan MS5.5 and MS5.0 earthquake sequence[J]. Acta Seismologica Sinica,36(4):640–650 (in Chinese).
    郑秀芬,欧阳飚,张东宁,姚志祥,梁建宏,郑洁. 2009. “国家数字测震台网数据备份中心” 技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报,52(5):1412–1417. doi: 10.3969/j.issn.0001-5733.2009.05.031
    Zheng X F,Ouyang B,Zhang D N,Yao Z X,Liang J H,Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics,52(5):1412–1417 (in Chinese).
    Allen C R,Gillespie A R,Han Y,Sieh K E,Zhang B C,Zhu C N. 1984. Red River and associated faults,Yunnan Province,China:Quaternary geology,slip rates,and seismic hazard[J]. Geol Soc Am Bull,95(6):686–700. doi: 10.1130/0016-7606(1984)95<686:RRAAFY>2.0.CO;2
    Cesca S,Heimann S,Dahm T. 2010. Rapid directivity detection by azimuthal amplitude spectra inversion[J]. J Seismol,15(1):147–164. doi: 10.1007/s10950-010-9217-4
    Dziewonski A,Hales A,Lapwood E. 1975. Parametrically simple Earth models consistent with geophysical data[J]. Phys Earth Planet Inter,10(1):12–48. doi: 10.1016/0031-9201(75)90017-5
    Enescu B,Ito K. 2005. The 1998 Hida Mountain,Central Honshu,Japan,earthquake swarm:Double-difference event relocation,frequency-magnitude distribution and Coulomb stress changes[J]. Tectonophysics,409(12/3/4):147–157. doi: 10.1016/j.tecto.2005.08.013
    Etchecopar A,Vasseur G,Daignieres M. 1981. An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis[J]. J Struct Geol,3(1):51–65. doi: 10.1016/0191-8141(81)90056-0
    Gephart J W,Forsyth D W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data:Application to the San Fernando earthquake sequence[J]. J Geophys Res:Solid Earth,89(B11):9305–9320. doi: 10.1029/JB089iB11p09305
    Hardebeck J L,Michael A J. 2006. Damped regional-scale stress inversions:Methodology and examples for southern California and the Coalinga aftershock sequence[J]. J Geophys Res:Solid Earth,111(B11):B11310.
    Jones L M,Wang B,Xu S,Fitch T J. 1982. The foreshock sequence of the February 4,1975,Haicheng earthquake (M=7.3)[J]. J Geophys Res:Solid Earth,87(B6):4575–4584. doi: 10.1029/JB087iB06p04575
    Kato A,Fukuda J,Nakagawa S,Obara K. 2016. Foreshock migration preceding the 2016 MW7.0 Kumamoto earthquake,Japan[J]. Geophys Res Lett,43(17):8945–8953. doi: 10.1002/2016GL070079
    Lei X L,Xie C D,Fu B H. 2011. Remotely triggered seismicity in Yunnan,southwestern China,following the 2004 MW9.3 Sumatra earthquake[J]. J Geophys Res:Solid Earth,116:B08303.
    Leonard M. 2010. Earthquake fault scaling:Self-consistent relating of rupture length,width,average displacement,and moment release[J]. Bull Seismol Soc Am,100(5A):1971–1988. doi: 10.1785/0120090189
    Matsumoto K,Sato T,Takanezawa T,Ooe M. 2001. GOTIC2:A program for computation of oceanic tidal loading effect[J]. J Geod Soc Jpn,47(1):243–248.
    Morris A,Ferrill D A,Brent Henderson D B. 1996. Slip tendency analysis and fault reactivation[J]. Geology,24(3):275–278. doi: 10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2
    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,82(2):1018–1040.
    Peng G, Lei X, Wang G, Jiang F. 2021. Precursory tidal triggering and b value variation before the 2011 MW5.1 and 5.0 Tengchong, China earthquakes[J]. Earth Planet Sci Lett, 574. doi: 10.1016/j.jpgl.2021.117167.
    Savage J C,Burford R O. 1973. Geodetic determination of relative plate motion in central California[J]. J Geophys Res,78(5):832–845. doi: 10.1029/JB078i005p00832
    Scholz C. 1977. A physical interpretation of the Haicheng earthquake prediction[J]. Nature,267(5607):121–124. doi: 10.1038/267121a0
    Somerville P G,McLaren J P,LeFevre L V,Burger R W,Helmberger D V. 1987. Comparison of source scaling relations of eastern and western North American earthquakes[J]. Bull Seismol Soc Am,77(2):322–346. doi: 10.1785/BSSA0770020322
    Tanaka S,Ohtake M,Sato H. 2002. Spatio-temporal variation of the tidal triggering effect on earthquake occurrence associated with the 1982 South Tonga earthquake of MW7.5[J]. Geophys Res Lett,29(16):3-1–3-4. doi: 10.1029/2002GL015386
    Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
    Wang M,Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):e2019JB018774.
    Xie C D,Lei X L,Zhao X Y,Ma Q B,Yang S M,Wang Y N. 2017. Tidal triggering of earthquakes in the Ning’er area of Yunnan Province,China[J]. J Asian Earth Sci,138:477–483. doi: 10.1016/j.jseaes.2017.02.029
    Xu Y,Koper K D,Burlacu R,Herrmann R B,Li D N. 2020. A new uniform moment tensor catalog for Yunnan,China,from January 2000 through December 2014[J]. Seismol Res Lett,91(2A):891–900. doi: 10.1785/0220190242
    Yang Y,Yao H J,Wu H X,Zhang P,Wang M M. 2020. A new crustal shear-velocity model in Southwest China from joint seismological inversion and its implications for regional crustal dynamics[J]. Geophys J Int,220(2):1379–1393.
    Zhang X,Sanderson D J. 1996. Numerical modelling of the effects of fault slip on fluid flow around extensional faults[J]. J Struct Geol,18(1):109–119. doi: 10.1016/0191-8141(95)00086-S
    Zhu L P,Ben-Zion Y. 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data[J]. Geophys J Int,194(2):839–843. doi: 10.1093/gji/ggt137
  • Related Articles

Catalog

    Article views (2089) PDF downloads (456) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return