Kuang C L,Zhang R Q,Chen C F,Liu J D. 2022. High-resolution crustal structure in the Songliao basin. Acta Seismologica Sinica44(4):555−566. DOI: 10.11939/jass.20210108
Citation: Kuang C L,Zhang R Q,Chen C F,Liu J D. 2022. High-resolution crustal structure in the Songliao basin. Acta Seismologica Sinica44(4):555−566. DOI: 10.11939/jass.20210108

High-resolution crustal structure in the Songliao basin

More Information
  • Received Date: June 09, 2021
  • Revised Date: September 18, 2021
  • Available Online: April 17, 2022
  • Published Date: July 14, 2022
  • High-resolution shallow crustal structure beneath the Songliao basin of Northeast (NE) China has obvious economic and scientific significance. To constrain the sediment and crustal structure of the Songliao basin, H-β grid search method based on wavefield downward continuation and decomposition is used with teleseismic data recorded from portable broadband seismic arrays in the NE China. The results show that the estimated sediment thickness is 0.2−2.5 km, and becomes thinner from the central depression toward the margin of the basin, with the thinnest sediment in the southwestern region. The crustal thickness varies from 24 km to 34 km, and its lateral variation correlates with the distribution of sedimentary thicknesses to a certain extent. The crustal stretching factor is calculated from the sedimentary and crustal thicknesses, with an average close to the lithospheric stretching estimation from previous receiver function studies. Thus, we infer that the thinning of the crust and lithosphere is dominated by pure shear mode during the extensional process of the Songliao basin. Moreover, the Songliao basin has a high crustal vP/vS ratio, indicating possible magmatic underplating during the lithospheric extension beneath the Songliao basin.
  • 包汉勇,郭战峰,张罗磊,黄亚平. 2013. 盆地伸展系数求取方法与评价:以苏北盆地为例[J]. 石油实验地质,35(3):331–338. doi: 10.11781/sysydz201303331
    Bao H Y,Guo Z F,Zhang L L,Huang Y P. 2013. Calculating methods and assessment of stretching factor:A case study of northern Jiangsu basin[J]. Petroleum Geology &Experiment,35(3):331–338 (in Chinese).
    窦立荣. 1992. 东北含油气区中新生代断陷盆地石油地质特征及资源远景[J]. 江汉石油学院学报,14(1):1–8.
    Dou L R. 1992. Characteristics of petroleum geology and petroleum potential in Meso-Cenozoic fault basins in northeastern petroleum-bearing provinces,China[J]. Journal of Jianghan Petroleum Institute,14(1):1–8 (in Chinese).
    符伟. 2019. 深反射剖面揭示的松辽盆地北部深部结构、动力学背景与油气远景[D]. 长春: 吉林大学: 67–82.
    Fu W. 2019. Deep Structure, Dynamic Background and Hydrocarbon Prospect of Northern Songliao Basin: Revealed by Deep Seismic Reflection Profile[D]. Changchun: Jilin University: 67–82 (in Chinese).
    傅维洲,杨宝俊,刘财,Кгылов С B. 1998. 中国满洲里—绥芬河地学断面地震学研究[J]. 长春科技大学学报,28(2):87–93.
    Fu W Z,Yang B J,Liu C,Кгылов C B. 1998. Study on the seismology in Manzhouli-Suifenhe geoscience transect of China[J]. Journal of Changchun University of Science and Technology,28(2):87–93 (in Chinese).
    高立新,戴勇. 2020. 现今中国东北地区地球动力学环境[J]. 大地测量与地球动力学,40(11):1101–1107.
    Gao L X,Dai Y. 2020. The present geodynamic environment of Northeast China[J]. Journal of Geodesy and Geodynamics,40(11):1101–1107 (in Chinese).
    高延光,李永华. 2014. 中国东北-华北地区地壳厚度与泊松比及其地质意义[J]. 地球物理学报,57(3):847–857. doi: 10.6038/cjg20140314
    Gao Y G,Li Y H. 2014. Crustal thickness and vP/vS in the Northeast China-North China region and its geological implication[J]. Chinese Journal of Geophysics,57(3):847–857 (in Chinese).
    高占永. 2015. 中国东北地区地壳上地幔结构的接收函数研究[D]. 北京: 中国地震局地球物理研究所: 31–46.
    Gao Z Y. 2015. The Study of the Crustal and Upper Mantle Structure in Northeast China From Teleseismic Receiver Function[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 31–46 (in Chinese).
    葛荣峰,张庆龙,王良书,解国爱,徐士银,陈娟,王锡勇. 2010. 松辽盆地构造演化与中国东部构造体制转换[J]. 地质论评,56(2):180–195.
    Ge R F,Zhang Q L,Wang L S,Xie G A,Xu S Y,Chen J,Wang X Y. 2010. Tectonic evolution of Songliao basin and the prominent tectonic regime transition in eastern China[J]. Geological Review,56(2):180–195 (in Chinese).
    侯贺晟,王成善,张交东,马峰,符伟,王璞珺,黄永建,邹长春,高有峰,高远,张来明,杨瑨,国瑞. 2018. 松辽盆地大陆深部科学钻探地球科学研究进展[J]. 中国地质,45(4):641–657. doi: 10.12029/gc20180401
    Hou H S,Wang C S,Zhang J D,Ma F,Fu W,Wang P J,Huang Y J,Zou C C,Gao Y F,Gao Y,Zhang L M,Yang J,Guo R. 2018. Deep continental scientific drilling engineering in Songliao basin:Progress in earth science research[J]. Geology in China,45(4):641–657 (in Chinese).
    胡望水,吕炳全,张文军,毛治国,冷军,官大勇. 2005. 松辽盆地构造演化及成盆动力学探讨[J]. 地质科学,40(1):16–31.
    Hu W S,Lü B Q,Zhang W J,Mao Z G,Leng J,Guan D Y. 2005. An approach to tectonic evolution and dynamics of the Songliao basin[J]. Chinese Journal of Geology,40(1):16–31 (in Chinese).
    嵇少丞,王茜,杨文采. 2009. 华北克拉通泊松比与地壳厚度的关系及其大地构造意义[J]. 地质学报,83(3):324–330. doi: 10.3321/j.issn:0001-5717.2009.03.002
    Ji S C,Wang Q,Yang W C. 2009. Correlation between crustal thickness and Poisson’s ratio in the North China craton and its implication for lithospheric thinning[J]. Acta Geologica Sinica,83(3):324–330 (in Chinese).
    李恩泽,刘财,张良怀,曾昭发. 2012. 松辽盆地地震构造与地震活动相关性研究[J]. 地球物理学进展,27(4):1337–1349. doi: 10.6038/j.issn.1004-2903.2012.04.007
    Li E Z,Liu C,Zhang L H,Zeng Z F. 2012. The correlation of structure and earthquake in Songliao basin[J]. Progress in Geophysics,27(4):1337–1349 (in Chinese).
    李国良. 2016. 瑞雷波椭圆率的测定与在反演S波速度结构中的应用[D]. 北京: 中国石油大学(北京): 14–28.
    Li G L. 2016. Measurement of Rayleigh Wave Ellipticity and Its Application to the Joint Inversion of High-Resolution S-Wave Velocity Structure[D]. Beijing: China University of Petroleum (Beijing): 14–28 (in Chinese).
    李国良. 2019. 利用被动源数据联合反演盆地3D速度结构[D]. 北京: 中国石油大学(北京): 47–69.
    Li G L. 2019. Joint Inversion of Basin-Wide 3D Sedimentary Structure With Passive Seismic Data[D]. Beijing: China University of Petroleum (Beijing): 47–69 (in Chinese).
    李英宾,李毅,魏滨,刘波,张占彬,杨明. 2019. CSAMT和浅层地震在松辽盆地西南部铀矿勘查中的应用[J]. 地质与勘探,55(6):1442–1451.
    Li Y B,Li Y,Wei B,Liu B,Zhang Z B,Yang M. 2019. Application of CSAMT and shallow seismic reflection to uranium exploration in southwestern Songliao basin[J]. Geology and Exploration,55(6):1442–1451 (in Chinese).
    林畅松,张燕梅. 1995. 拉伸盆地模拟理论基础与新进展[J]. 地学前缘,2(3/4):79–88.
    Lin C S,Zhang Y M. 1995. Quantitative stretching models and computer simulation of rift basin[J]. Earth Science Frontiers,2(3/4):79–88 (in Chinese).
    刘德来,陈发景,关德范,唐建人,刘翠荣. 1996. 松辽盆地形成、发展与岩石圈动力学[J]. 地质科学,31(4):397–408.
    Liu D L,Chen F J,Guan D F,Tang J R,Liu C R. 1996. A study on lithospheric dynamics of the origin and evolution in the Songliao basin[J]. Chinese Journal of Geology,31(4):397–408 (in Chinese).
    马海超,储日升,盛敏汉,危自根. 2020. 利用深源近震高频Ps转换波震相研究松辽盆地沉积层结构[J]. 大地测量与地球动力学,40(2):214–220.
    Ma H C,Chu R S,Sheng M H,Wei Z G. 2020. Sedimentary structures of the Songliao basin using high-frequency Ps converted wave from local deep earthquakes[J]. Journal of Geodesy and Geodynamics,40(2):214–220 (in Chinese).
    王璞珺,刘海波,任延广,万晓樵,王树学,瞿雪姣,蒙启安,黄永建,黄清华,高有峰,王成善. 2017. 松辽盆地白垩系大陆科学钻探“松科2井”选址[J]. 地学前缘,24(1):216–228.
    Wang P J,Liu H B,Ren Y G,Wang X Q,Wang S X,Qu X J,Meng Q A,Huang Y J,Huang Q H,Gao Y F,Wang C S. 2017. How to choose a right drilling site for the ICDP Cretaceous Continental Scientific Drilling in the Songliao basin (SK2),Northeast China[J]. Earth Science Frontiers,24(1):216–228 (in Chinese).
    王仁涛,李志伟,包丰,谢军,赵建忠. 2019. 松辽盆地沉积层结构的短周期地震背景噪声成像研究[J]. 地球物理学报,62(9):3385–3399. doi: 10.6038/cjg2019M0144
    Wang R T,Li Z W,Bao F,Xie J,Zhao J Z. 2019. S-wave velocity structure of sediment in Songliao basin from short-period ambient noise tomography[J]. Chinese Journal of Geophysics,62(9):3385–3399 (in Chinese).
    危自根,陈凌. 2012. 东北地区至华北北缘地壳结构的区域差异:地壳厚度与波速比的联合约束[J]. 地球物理学报,55(11):3601–3614. doi: 10.6038/j.issn.0001-5733.2012.11.009
    Wei Z G,Chen L. 2012. Regional differences in crustal structure beneath northeastern China and northern North China Craton:Constraints from crustal thickness and vP/vS ratio[J]. Chinese Journal of Geophysics,55(11):3601–3614 (in Chinese).
    危自根,储日升,陈凌. 2015. 华北克拉通地壳结构区域差异的接收函数研究[J]. 中国科学:地球科学,45(10):1504–1514.
    Wei Z G,Chu R S,Chen L. 2015. Regional differences in crustal structure of the North China Craton from receiver functions[J]. Science China Earth Sciences,58(12):2200–2210. doi: 10.1007/s11430-015-5162-y
    武岩. 2011. 利用接收函数方法研究华北克拉通地壳上地幔结构[D]. 北京: 中国地震局地球物理研究所: 25–39.
    Wu Y. 2011. The Structure of the Crust and Upper Mantle in North China Craton From Teleseismic Receiver Function[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 25–39 (in Chinese).
    谢振新,吴庆举,周仕勇,朱敏. 2018. 兴蒙造山带诺敏河火山群地壳厚度与波速比研究[J]. 地球物理学报,61(12):4805–4816. doi: 10.6038/cjg2018M0197
    Xie Z X,Wu Q J,Zhou S Y,Zhu M. 2018. Study of crustal thickness and vP/vS ratio beneath the Nuomin River volcanoes[J]. Chinese Journal of Geophysics,61(12):4805–4816 (in Chinese).
    杨宝俊,穆石敏,金旭,刘财. 1996. 中国满洲里—绥芬河地学断面地球物理综合研究[J]. 地球物理学报,39(6):772–782. doi: 10.3321/j.issn:0001-5733.1996.06.007
    Yang B J,Mu S M,Jin X,Liu C. 1996. Synthesized study on the geophysics of Manzhouli-Suifenhe geoscience transect,China[J]. Chinese Journal of Geophysics,39(6):772–782 (in Chinese).
    姚志祥,王椿镛,曾融生,楼海,周民都. 2014. 利用接收函数方法研究西秦岭构造带及其邻区地壳结构[J]. 地震学报,36(1):1–19. doi: 10.3969/j.issn.0253-3782.2014.01.001
    Yao Z X,Wang C Y,Zeng R S,Lou H,Zhou M D. 2014. Crustal structure in western Qinling tectonic belt and its adjacent regions deduced from receiver functions[J]. Acta Seismologica Sinica,36(1):1–19 (in Chinese).
    余嘉顺,曹俊兴,鲍新毅,黄跃. 2003. 表面低速层对勘探地震横波波形影响的模拟研究[J]. 成都理工大学学报(自然科学版),30(6):583–587. doi: 10.3969/j.issn.1671-9727.2003.06.006
    Yu J S,Cao J X,Bao X Y,Huang Y. 2003. A modeling of the effects of ground surface weathering layers on reflected shear waves in seismic exploration[J]. Journal of Chengdu University of Technology (Science &Technology Edition),30(6):583–587 (in Chinese).
    张广成,吴庆举,潘佳铁,张风雪,余大新. 2013. 利用H-K叠加方法和CCP叠加方法研究中国东北地区地壳结构与泊松比[J]. 地球物理学报,56(12):4084–4094. doi: 10.6038/cjg20131213
    Zhang G C,Wu Q J,Pan J T,Zhang F X,Yu D X. 2013. Study of crustal structure and Poisson ratio of NE China by H-K stack and CCP stack methods[J]. Chinese Journal of Geophysics,56(12):4084–4094 (in Chinese).
    张毅. 2019. 应用接收函数方法研究中国东部壳幔间断面结构[D]. 北京: 中国地质大学(北京): 29–41.
    Zhang Y. 2019. Study of the Crust-Mantle Discontinuity Structure in Eastern China With Receiver Function Method[D]. Beijing: China University of Geosciences (Beijing): 29–41 (in Chinese).
    周庆华,冯子辉,门广田. 2007. 松辽盆地北部徐家围子断陷现今地温特征及其与天然气生成关系研究[J]. 中国科学:D辑,37(增刊2):177–188.
    Zhou Q H,Feng Z H,Men G T. 2008. Present geotemperature and its suggestion to natural gas generation in Xujiaweizi fault-depression of the northern Songliao basin[J]. Science in China:Series D,51(1):207–220.
    朱洪翔,田有,刘财,冯晅,杨宝俊,刘才华,刘廷,马锦程. 2017. 中国东北地区高分辨率地壳结构:远震接收函数[J]. 地球物理学报,60(5):1676–1689. doi: 10.6038/cjg20170506
    Zhu H X,Tian Y,Liu C,Feng X,Yang B J,Liu C H,Liu T,Ma J C. 2017. High-resolution crustal structure of Northeast China revealed by teleseismic receiver functions[J]. Chinese Journal of Geophysics,60(5):1676–1689 (in Chinese).
    朱洪翔,田有,刘财,冯晅. 2018. 沉积盆地地区地壳结构估计:预测反褶积方法消除接收函数多次波混响[J]. 地球物理学报,61(9):3664–3675. doi: 10.6038/cjg2018L0152
    Zhu H X,Tian Y,Liu C,Feng X. 2018. Estimation of the crustal structure beneath the sedimentary basin:Predictive deconvolution method to remove multiples reverberations of the receiver function[J]. Chinese Journal of Geophysics,61(9):3664–3675 (in Chinese).
    Bao Y F,Niu F L. 2017. Constraining sedimentary structure using frequency-dependent P wave particle motion:A case study of the Songliao basin in NE China[J]. J Geophys Res,122(11):9083–9094. doi: 10.1002/2017JB014721
    Christensen N I,Mooney W D. 1995. Seismic velocity structure and composition of the continental crust:A global view[J]. J Geophys Res,100(B6):9761–9788. doi: 10.1029/95JB00259
    Gilbert F,Backus G E. 1966. Propagator matrices in elastic wave and vibration problems[J]. Geophysics,31(2):326–332. doi: 10.1190/1.1439771
    Graves R W,Pitarka A,Somerville P G. 1998. Ground-motion amplification in the Santa Monica area:Effects of shallow basin-edge structure[J]. Bull Seismol Soc Am,88(5):1224–1242.
    Guo Z,Chen Y J,Ning J Y,Feng Y G,Grand S P,Niu F L,Kawakatsu H,Tanaka S,Obayashi M,Ni J. 2015. High resolution 3-D crustal structure beneath NE China from joint inversion of ambient noise and receiver functions using NECESSArray data[J]. Earth Planet Sci Lett,416:1–11. doi: 10.1016/j.jpgl.2015.01.044
    Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bull Seismol Soc Am,43(1):17–34. doi: 10.1785/BSSA0430010017
    He J,Wu Q J,Sandvol E,Ni J,Gallegos A,Gao M T,Ulziibat M,Demberel S. 2016. The crustal structure of south central Mongolia using receiver functions[J]. Tectonics,35(6):1392–1403. doi: 10.1002/2015TC004027
    Kennett B L N,Kerry N J,Woodhouse J H. 1978. Symmetries in the reflection and transmission of elastic waves[J]. Geophys J Int,52(2):215–229. doi: 10.1111/j.1365-246X.1978.tb04230.x
    Leahy G M,Saltzer R L,Schmedes J. 2012. Imaging the shallow crust with teleseismic receiver functions[J]. Geophys J Int,191(2):627–636. doi: 10.1111/j.1365-246X.2012.05615.x
    Li G L,Chen H C,Niu F L,Guo Z,Yang Y J,Xie J. 2016. Measurement of Rayleigh wave ellipticity and its application to the joint inversion of high-resolution S wave velocity structure beneath Northeast China[J]. J Geophys Res,121(2):864–880. doi: 10.1002/2015JB012459
    Lin C S,Li S T,Zhang Q M. 1997. Lithospheric stretching,subsidence and thermal history modeling:Application to Yinggehai,Qiongdongnan and Songliao basins in East China[J]. J China Univ Geosci,8(1):83–89.
    McKenzie D. 1978. Some remarks on the development of sedimentary basins[J]. Earth Planet Sci Lett,40(1):25–32. doi: 10.1016/0012-821X(78)90071-7
    Ren J Y,Tamaki K,Li S T,Zhang J X. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas[J]. Tectonophysics,344(3/4):175–205.
    Tao K,Liu T Z,Ning J Y,Niu F L. 2014a. Estimating sedimentary and crustal structure using wavefield continuation:Theory,techniques and applications[J]. Geophys J Int,197(1):443–457. doi: 10.1093/gji/ggt515
    Tao K,Niu F L,Ning J Y,Chen Y J,Grand S,Kawakatsu H,Tanaka S,Obayashi M,Ni J. 2014b. Crustal structure beneath NE China imaged by NECESSArray receiver function data[J]. Earth Planet Sci Lett,398:48–57. doi: 10.1016/j.jpgl.2014.04.043
    Wei H H,Liu J L,Meng Q R. 2010. Structural and sedimentary evolution of the southern Songliao basin,Northeast China,and implications for hydrocarbon prospectivity[J]. AAPG Bull,94(4):531–564.
    Wernicke B. 1985. Uniform-sense normal simple shear of the continental lithosphere[J]. Can J Earth Sci,22(1):108–125. doi: 10.1139/e85-009
    Xiong X S,Gao R,Li Y K,Hou H S,Liang H D,Li W H,Guo L H,Lu Z W. 2015. The lithosphere structure of the Great Xing’an Range in the eastern Central Asian Orogenic Belt:Constrains from the joint geophysical profiling[J]. J Asian Earth Sci,113:481–490. doi: 10.1016/j.jseaes.2015.06.006
    Yeck W L,Sheehan A F,Schulte-Pelkum V. 2013. Sequential Hκ stacking to obtain accurate crustal thicknesses beneath sedimentary basins[J]. Bull Seismol Soc Am,103(3):2142–2150. doi: 10.1785/0120120290
    Yu Y Q,Song J G,Liu K H,Gao S S. 2015. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions[J]. J Geophys Res:Solid Earth,120(5):3208–3218. doi: 10.1002/2014JB011610
    Zhang R Q,Wu Q J,Sun L,He J,Gao Z Y. 2014. Crustal and lithospheric structure of Northeast China from S-wave receiver functions[J]. Earth Planet Sci Lett,401:196–205. doi: 10.1016/j.jpgl.2014.06.017
    Zheng C,Zhang R Q,Wu Q J,Li Y H,Zhang F X,Shi K X,Ding Z F. 2019. Variations in crustal and uppermost mantle structures across eastern Tibet and adjacent regions:Implications of crustal flow and asthenospheric upwelling combined for expansions of the Tibetan Plateau[J]. Tectonics,38(7):3167–3181.
    Zhu L,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res:Solid Earth,105(B2):2969–2980.
  • Cited by

    Periodical cited type(8)

    1. 王莉婵,毛国良,郭垚嘉,林庆西. 京津冀地区P_d方法震级估算模型研究. 大地测量与地球动力学. 2025(03): 260-265 .
    2. 彭朝勇,程振鹏,郑钰,徐志强. 考虑P波预警参数的震源破裂特征实时持续估测方法. 地球科学. 2024(02): 391-402 .
    3. 宋晋东,朱景宝,李水龙,王士成,韦永祥,李山有. 基于机器学习预测模型的现地警报级别地震预警试验——以2022年9月5日四川泸定6.8级地震为例. 地球物理学报. 2024(08): 3004-3016 .
    4. 郝美仙,王鑫,张珂,刘颖,尹战军,张建中,郑钰. 基于地震预警参数阈值评估内蒙古地区地震潜在破坏区. 中国地震. 2021(01): 239-248 .
    5. 彭朝勇,郑钰,徐志强,姜旭东,杨建思. 面向地震烈度仪的现地地震动预测模型的构建与验证. 地震学报. 2021(05): 643-655 . 本站查看
    6. 孙丽,梁建宏,徐志国,刘杰. 虚拟地震学家(VS)方法在中国地震台网中的测试和评估. 中国地震. 2021(04): 843-856 .
    7. XU Shi-wei,WANG Yu,WANG Sheng-wei,LI Jian-zheng. Research and application of real-time monitoring and early warning thresholds for multi-temporal agricultural products information. Journal of Integrative Agriculture. 2020(10): 2582-2596 .
    8. Wuchuan Xu,Xiangyu An,Enlai Li,Chengwei Wang,Li Zhao. Earthquake early warning system in Liaoning, China based on PRESTo. Earthquake Science. 2020(Z1): 281-292 .

    Other cited types(3)

Catalog

    Article views (1061) PDF downloads (224) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return