Citation: | Zhu A Y,Sun Z H,Jiang C S,Chen S,Zhang D N,Cui G L. 2021. The dynamic mechanical response of the fault under different water injection schedules. Acta Seismologica Sinica,43(6):730−744. DOI: 10.11939/jass.20210137 |
管全中,董大忠,张华玲,孙莎莎,张素荣,郭雯. 2021. 富有机质页岩生物成因石英的类型及其耦合成储机制:以四川盆地上奥陶统五峰组—下志留统龙马溪组为例[J]. 石油勘探与开发,48(4):700–709.
|
Guan Q Z,Dong D Z,Zhang H L,Sun S S,Zhang S R,Guo W. 2021. Types of biogenic quartz and its coupling storage mechanism in organic-rich shales:A case study of the upper Ordovician Wufeng formation to lower Silurian Longmaxi formation in the Sichuan basin,SW China[J]. Petroleum Exploration and Development,48(4):700–709 (in Chinese).
|
洪汉净. 1994. 从地震模拟看匀阻段与大震的关系[J]. 地震地质,16(2):109–114.
|
Hong H J. 1994. Seismic simulation:Correlation of resistance-homogeneous fault segment with large earthquakes[J]. Seismology and Geology,16(2):109–114 (in Chinese).
|
李大虎,詹艳,丁志峰,高家乙,吴萍萍,孟令媛,孙翔宇,张旭. 2021. 四川长宁MS6.0地震震区上地壳速度结构特征与孕震环境[J]. 地球物理学报,64(1):18–35. doi: 10.6038/cjg2021O0241
|
Li D H,Zhan Y,Ding Z F,Gao J Y,Wu P P,Meng L Y,Sun X Y,Zhang X. 2021. Upper crustal velocity and seismogenic environment of the Changning MS6.0 earthquake region in Sichuan,China[J]. Chinese Journal of Geophysics,64(1):18–35 (in Chinese).
|
涂毅敏,陈运泰. 2002. 德国大陆超深钻井注水诱发地震的精确定位[J]. 地震学报,24(6):587–598. doi: 10.3321/j.issn:0253-3782.2002.06.004
|
Tu Y M,Chen Y T. 2002. The acurate location of the injection-induced microearthquakes in German continental deep drilling program[J]. Acta Seismologica Sinica,24(6):587–598 (in Chinese).
|
薛霆虓,傅容珊,陈宇卫,邵志刚. 2009. 大尺度断层活动性数值模拟及地震学类比[J]. 地球物理学进展,24(5):1616–1626. doi: 10.3969/j.issn.1004-2903.2009.05.010
|
Xue T X,Fu R S,Chen Y W,Shao Z G. 2009. Numerical simulation of large scale fault activity and it's seismological analogy[J]. Progress in Geophysics,24(5):1616–1626 (in Chinese).
|
易桂喜,龙锋,梁明剑,赵敏,王思维,宫悦,乔慧珍,苏金蓉. 2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析[J]. 地球物理学报,62(9):3432–3447. doi: 10.6038/cjg2019N0297
|
Yi G X,Long F,Liang M J,Zhao M,Wang S W,Gong Y,Qiao H Z,Su J R. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence[J]. Chinese Journal of Geophysics,62(9):3432–3447 (in Chinese).
|
张致伟,程万正,梁明剑,王晓山,龙锋,许艳,陈文康,王世元. 2012. 四川自贡—隆昌地区注水诱发地震研究[J]. 地球物理学报,55(5):1635–1645. doi: 10.6038/j.issn.0001-5733.2012.05.021
|
Zhang Z W,Cheng W Z,Liang M J,Wang X S,Long F,Xu Y,Chen W K,Wang S Y. 2012. Study on earthquakes induced by water injection in Zigong-Longchang area,Sichuan[J]. Chinese Journal of Geophysics,55(5):1635–1645 (in Chinese).
|
周仕勇. 2008. 川西及邻近地区地震活动性模拟和断层间相互作用研究[J]. 地球物理学报,51(1):165–174. doi: 10.3321/j.issn:0001-5733.2008.01.021
|
Zhou S Y. 2008. Seismicity simulation in western Sichuan of China based on the fault interactions and its implication on the estimation of the regional earthquake risk[J]. Chinese Journal of Geophysics,51(1):165–174 (in Chinese).
|
朱航,何畅. 2014. 注水诱发地震序列的震源机制变化特征:以四川长宁序列为例[J]. 地球科学——中国地质大学学报,39(12):1776–1782.
|
Zhu H,He C. 2014. Focal mechanism changing character of earthquake sequence induced by water injection:A case study of Changning sequence,Sichuan Province[J]. Earth Science——Journal of China University of Geosciences,39(12):1776–1782 (in Chinese). doi: 10.3799/dqkx.2014.161
|
邹才能,董大忠,王玉满,李新景,黄金亮,王淑芳,管全中,张晨晨,王红岩,刘洪林,拜文华,梁峰,吝文,赵群,刘德勋,杨智,梁萍萍,孙莎莎,邱振. 2016. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发,43(2):166–178. doi: 10.11698/PED.2016.02.02
|
Zou C N,Dong D Z,Wang Y M,Li X J,Huang J L,Wang S F,Guan Q Z,Zhang C C,Wang H Y,Liu H L,Bai W H,Liang F,Lin W,Zhao Q,Liu D X,Yang Z,Liang P P,Sun S S,Qiu Z. 2016. Shale gas in China:Characteristics,challenges and prospects (Ⅱ)[J]. Petroleum Exploration and Development,43(2):166–178 (in Chinese).
|
邹才能,赵群,董大忠,杨智,邱振,梁峰,王南,黄勇,端安详,张琴,胡志明. 2017. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,28(12):1781–1796.
|
Zou C N,Zhao Q,Dong D Z,Yang Z,Qiu Z,Liang F,Wang N,Huang Y,Duan A X,Zhang Q,Hu Z M. 2017. Geological characteristics,main challenges and future prospect of shale gas[J]. Natural Gas Geoscience,28(12):1781–1796 (in Chinese).
|
Alghannam M,Juanes R. 2020. Understanding rate effects in injection-induced earthquakes[J]. Nat Commun,11(1):3053. doi: 10.1038/s41467-020-16860-y
|
Andrés S,Santillán D,Mosquera J C,Cueto-Felgueroso L. 2019. Delayed weakening and reactivation of rate-and-state faults driven by pressure changes due to fluid injection[J]. J Geophys Res:Solid Earth,124(11):11917–11937. doi: 10.1029/2019JB018109
|
Biot M A. 1941. General theory of three-dimensional consolidation[J]. J Appl Phys,12(2):155–164. doi: 10.1063/1.1712886
|
Brace W F,Byerlee J D. 1966. Stick-slip as a mechanism for earthquakes[J]. Science,153(3739):990–992. doi: 10.1126/science.153.3739.990
|
Cappa F,Scuderi M M,Collettini C,Guglielmi Y,Avouac J P. 2019. Stabilization of fault slip by fluid injection in the laboratory and in situ[J]. Sci Adv,5(3):eaau4065. doi: 10.1126/sciadv.aau4065
|
Chang K W,Yoon H,Kim Y,Lee M Y. 2020. Operational and geological controls of coupled poroelastic stressing and pore-pressure accumulation along faults:Induced earthquakes in Pohang,South Korea[J]. Sci Rep,10(1):2073. doi: 10.1038/s41598-020-58881-z
|
Cheng H H,Zhang H,Zhu B J,Sun Y J,Zheng L,Yang S H,Shi Y L. 2012. Finite element investigation of the poroelastic effect on the Xinfengjiang reservoir-triggered earthquake[J]. Sci China Earth Sci,55(12):1942–1952. doi: 10.1007/s11430-012-4470-8
|
Cheng H H,Zhang H,Shi Y L. 2016. High-resolution numerical analysis of the triggering mechanism of ML5.7 Aswan reservoir earthquake through fully coupled poroelastic finite[J]. Pure Appl Geophys,173(5):1593–1605. doi: 10.1007/s00024-015-1200-0
|
Cueto-Felgueroso L,Santillán D,Mosquera J C. 2017. Stick-slip dynamics of flow-induced seismicity on rate and state faults[J]. Geophys Res Lett,44(9):4098–4106. doi: 10.1002/2016GL072045
|
Dieterich J H. 1992. Earthquake nucleation on faults with rate-and state-dependent strength[J]. Tectonophysics,211(1/4):115–134.
|
Dieterich J H,Richards-Dinger K B,Kroll K A. 2015. Modeling injection-induced seismicity with the physics-based earthquake simulator RSQSim[J]. Seismol Res Lett,86(4):1102–1109. doi: 10.1785/0220150057
|
Ellsworth W L. 2013. Injection-induced earthquakes[J]. Science,341(6142):1225942. doi: 10.1126/science.1225942
|
Frohlich C. 2012. Two-year survey comparing earthquake activity and injection-well locations in the Barnett Shale,Texas[J]. Proc Natl Acad Sci USA,109(35):13934–13938. doi: 10.1073/pnas.1207728109
|
Goebel T H W,Walter J I,Murray K,Brodsky E E. 2017. Comment on “How will induced seismicity in Oklahoma respond to decreased saltwater injection rates?” by C. Langenbruch and M. D. Zoback[J]. Sci Adv,3(8):e1700441. doi: 10.1126/sciadv.1700441
|
Goebel T H W,Brodsky E E. 2018. The spatial footprint of injection wells in a global compilation of induced earthquake sequences[J]. Science,361(6405):899–904. doi: 10.1126/science.aat5449
|
Goebel T H W,Rosson Z,Brodsky E E,Walter J I. 2019. Aftershock deficiency of induced earthquake sequences during rapid mitigation efforts in Oklahoma[J]. Earth Planet Sci Lett,522:135–143. doi: 10.1016/j.jpgl.2019.06.036
|
Jaeger J C, Cook N G W. 1969. Fundamentals of Rock Mechanics[M]. London: Methuen and Co. Ltd: 65–76.
|
Jin L,Zoback M D. 2018. Fully dynamic spontaneous rupture due to quasi-static pore pressure and poroelastic effects:An implicit nonlinear computational model of fluid-induced seismic events[J]. J Geophys Res:Solid Earth,123(11):9430–9468. doi: 10.1029/2018JB015669
|
Keranen K M,Weingarten M,Abers G A,Bekins B A,Ge S. 2014. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection[J]. Science,345(6195):448–451. doi: 10.1126/science.1255802
|
Keranen K M,Weingarten M. 2018. Induced seismicity[J]. Annu Rev Earth Planet Sci,46:149–174. doi: 10.1146/annurev-earth-082517-010054
|
Langenbruch C,Zoback M D. 2016. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates?[J]. Sci Adv,2(11):e1601542. doi: 10.1126/sciadv.1601542
|
Lei X L,Wang Z W,Su J R. 2019a. Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning,south Sichuan Basin,China[J]. Earth Planet Phys,3(6):510–525. doi: 10.26464/epp2019052
|
Lei X L,Wang Z W,Su J R. 2019b. The December 2018 ML5.7 and January 2019 ML5.3 earthquakes in South Sichuan Basin induced by shale gas hydraulic fracturing[J]. Seismol Res Lett,90(3):1099–1110. doi: 10.1785/0220190029
|
Lei X L,Su J R,Wang Z W. 2020. Growing seismicity in the Sichuan Basin and its association with industrial activities[J]. Sci China Earth Sci,63(11):1633–1660. doi: 10.1007/s11430-020-9646-x
|
Li T,Sun J B,Bao Y X,Zhan Y,Shen Z K,Xu X W,Lasserre C. 2021. The 2019 MW5.8 Changning,China earthquake:A cascade rupture of fold-accommodation faults induced by fluid injection[J]. Tectonophysics,801:228721. doi: 10.1016/j.tecto.2021.228721
|
Lick W. 1965. The instability of a fluid layer with time-dependent heating[J]. J Fluid Mech,21(3):565–576. doi: 10.1017/S0022112065000332
|
Liu J Q,Zahradník J. 2020. The 2019 MW5.7 Changning earthquake,Sichuan Basin,China:A shallow doublet with different faulting styles[J]. Geophys Res Lett,47(4):e2019GL085408.
|
Meng L Y,Mcgarr A,Zhou L Q,Zang Y. 2019. An investigation of seismicity induced by hydraulic fracturing in the Sichuan Basin of China based on data from a temporary seismic network[J]. Bull Seismol Soc Am,109(1):348–357. doi: 10.1785/0120180310
|
Norbeck J H,Horne R N. 2018. Maximum magnitude of injection-induced earthquakes:A criterion to assess the influence of pressure migration along faults[J]. Tectonophysics,733:108–118. doi: 10.1016/j.tecto.2018.01.028
|
Rajesh R,Gupta H K. 2021. Characterization of injection-induced seismicity at north central Oklahoma,USA[J]. J Seismol,25(1):327–337. doi: 10.1007/s10950-020-09978-5
|
Rao C V,Arkin A P. 2003. Stochastic chemical kinetics and the quasi-steady-state assumption:Application to the Gillespie algorithm[J]. J Chem Phys,118(11):4999–5010. doi: 10.1063/1.1545446
|
Rice J R,Cleary M P. 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[J]. Rev Geophys,14(2):227–241. doi: 10.1029/RG014i002p00227
|
Robinson J L. 1976. Theoretical analysis of convective instability of a growing horizontal thermal boundary layer[J]. Phys Fluids,19(6):778–791. doi: 10.1063/1.861570
|
Rubinstein J L,Ellsworth W L,Dougherty S L. 2018. The 2013-2016 induced earthquakes in harper and Sumner counties,southern Kansas[J]. Bull Seismol Soc Am,108(2):674–689. doi: 10.1785/0120170209
|
Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res:Solid Earth,88(B12):10359–10370. doi: 10.1029/JB088iB12p10359
|
Scholz C H. 2002. The Mechanics of Earthquakes and Faulting[M]. Cambridge: Cambridge University Press: 76−87.
|
Segall P,Lu S. 2015. Injection-induced seismicity:Poroelastic and earthquake nucleation effects[J]. J Geophys Res:Solid Earth,120(7):5082–5103. doi: 10.1002/2015JB012060
|
Segel L A,Slemrod M. 1989. The quasi-steady-state assumption:A case study in perturbation[J]. SIAM Rev,31(3):446–477. doi: 10.1137/1031091
|
Walter J I,Chang J C,Dotray P J. 2017. Foreshock seismicity suggests gradual differential stress increase in the months prior to the 3 September 2016 MW5.8 Pawnee earthquake[J]. Seismol Res Lett,88(4):1032–1039. doi: 10.1785/0220170007
|
Wang H F. 2000. Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology[M]. Princeton: Princeton University Press: 71−95.
|
Weingarten M,Ge S,Godt J W,Bekins B A,Rubinstein J L. 2015. High-rate injection is associated with the increase in U. S. mid-continent seismicity[J]. Science,348(6241):1336–1340. doi: 10.1126/science.aab1345
|
Xu P,Yu B M. 2008. Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry[J]. Adv Water Resour,31(1):74–81. doi: 10.1016/j.advwatres.2007.06.003
|
Yeo I W,Brown M R M,Ge S,Lee K K. 2020. Causal mechanism of injection-induced earthquakes through the MW5.5 Pohang earthquake case study[J]. Nat Commun,11(1):2614. doi: 10.1038/s41467-020-16408-0
|
Zhu W Q,Allison K L,Dunham E M,Yang Y Y. 2020. Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip[J]. Nat Commun,11(1):4833. doi: 10.1038/s41467-020-18598-z
|
1. |
殷伟伟,郑亚迪,张蕙. 影响山西台网地震定位因素的定量分析. 大地测量与地球动力学. 2024(05): 534-538 .
![]() | |
2. |
郝春月,郑重. 地震台阵监测能力综述. 地震地磁观测与研究. 2020(06): 3-14 .
![]() |