Fan Y H,Wang H W,Wen R Z,Ren Y F. 2023. Estimating stress drop of the 2013 Lushan earthquake sequence based on the empirical Green’s function spectral ratio method. Acta Seismologica Sinica45(1):98−106. DOI: 10.11939/jass.20210155
Citation: Fan Y H,Wang H W,Wen R Z,Ren Y F. 2023. Estimating stress drop of the 2013 Lushan earthquake sequence based on the empirical Green’s function spectral ratio method. Acta Seismologica Sinica45(1):98−106. DOI: 10.11939/jass.20210155

Estimating stress drop of the 2013 Lushan earthquake sequence based on the empirical Green’s function spectral ratio method

More Information
  • Received Date: October 07, 2021
  • Revised Date: January 15, 2022
  • Available Online: December 28, 2022
  • Published Date: January 16, 2023
  • We adopted the 2013 Lushan aftershocks as a typical example, to investigate the feasibility of estimating corner frequency and stress drop by the empirical Green’s function (EGF) spectral ratio method based on the strong motion observation data. Firstly, we suggested the quality standard on the EGF spectral ratio curve to guarantee the reliable estimation of seismic corner frequency and stress drop. The corner frequencies for the 17 Lushan aftershocks with magnitude in the range of 3.8−5.4 were then estimated. Referring to the seismic moment magnitude given by other studies, we further computed the seismic stress drops.The results show that the corner frequency of Lushan strong aftershocks is mainly in the range of 1.0−2.0 Hz, the average stress drop is 9.98 MPa, and seismic stress drop presents obvious dependency on seismic magnitude.
  • 林向东,葛洪魁,徐平,Dreger D,苏金蓉,王宝善,武敏捷. 2013. 近场全波形反演:芦山7.0级地震及余震矩张量解[J]. 地球物理学报,56(12):4037–4047. doi: 10.6038/cjg20131209
    Lin X D,Ge H K,Xu P,Dreger D,Su J R,Wang B S,Wu M J. 2013. Near field full waveform inversion:Lushan magnitude 7.0 earthquake and its aftershock moment tensor[J]. Chinese Journal of Geophysics,56(12):4037–4047 (in Chinese).
    吕坚,王晓山,苏金蓉,潘林山,李正,尹利文,曾新福,邓辉. 2013. 芦山7.0级地震序列的震源位置与震源机制解特征[J]. 地球物理学报,56(5):1753–1763. doi: 10.6038/cjg20130533
    Lü J,Wang X S,Su J R,Pan L S,Li Z,Yin L W,Zeng X F,Deng H. 2013. Hypocentral location and source mechanism of the MS7.0 Lushan earthquake sequence[J]. Chinese Journal of Geophysics,56(5):1753–1763 (in Chinese).
    温瑞智,王宏伟,任叶飞,冀昆. 2015. 芦山余震震源参数及震源区品质因子反演[J]. 哈尔滨工业大学学报,47(4):58–63. doi: 10.11918/j.issn.0367-6234.2015.04.010
    Wen R Z,Wang H W,Ren Y F,Ji K. 2015. Estimation of source parameters and quality factor based on generalized inversion method in Lushan earthquake[J]. Journal of Harbin Institute of Technology,47(4):58–63 (in Chinese).
    易桂喜,龙锋,Vallage A,Klinger Y,梁明剑,王思维. 2016. 2013年芦山地震序列震源机制与震源区构造变形特征分析[J]. 地球物理学报,59(10):3711–3731. doi: 10.6038/cjg20161017
    Yi G X,Long F,Vallage A,Klinger Y,Liang M J,Wang S W. 2016. Focal mechanism and tectonic deformation in the seismogenic area of the 2013 Lushan earthquake sequence,southwestern China[J]. Chinese Journal of Geophysics,59(10):3711–3731 (in Chinese).
    喻畑,李小军. 2012. 汶川地震余震震源参数及地震动衰减与场地影响参数反演分析[J]. 地震学报,34(5):621–632. doi: 10.3969/j.issn.0253-3782.2012.05.004
    Yu T,Li X J. 2012. Inversion of strong motion data for source parameters of Wenchuan aftershocks,attenuation function and average site effect[J]. Acta Seismologica Sinica,34(5):621–632 (in Chinese).
    郑勇,葛粲,谢祖军,Yang Y J,熊熊,许厚泽. 2013. 芦山与汶川地震震区地壳上地幔结构及深部孕震环境[J]. 中国科学:地球科学,43(6):1027–1037.
    Zheng Y,Ge C,Xie Z J,Yang Y J,Xiong X,Hsu H T. 2013. Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake[J]. Science China Earth Sciences,56(7):1158–1168. doi: 10.1007/s11430-013-4641-2
    Abercrombie R E,Bannister S,Ristau J,Doser D. 2017. Variability of earthquake stress drop in a subduction setting,the Hikurangi Margin,New Zealand[J]. Geophys J Int,208(1):306–320. doi: 10.1093/gji/ggw393
    Allmann B P,Shearer P M. 2009. Global variations of stress drop for moderate to large earthquakes[J]. J Geophys Res:Solid Earth,114(B1):B01310.
    Boatwright J. 1980. A spectral theory for circular seismic sources; simple estimates of source dimension,dynamic stress drop,and radiated seismic energy[J]. Bull Seismol Soc Am,70(1):1–27.
    Boatwright J,Fletcher J B,Fumal T E. 1991. A general inversion scheme for source,site,and propagation characteristics using multiply recorded sets of moderate-sized earthquakes[J]. Bull Seismol Soc Am,81(5):1754–1782.
    Boyd O S,McNamara D E,Hartzell S,Choy G. 2017. Influence of lithostatic stress on earthquake stress drops in North America[J]. Bull Seismol Soc Am,107(2):856–868. doi: 10.1785/0120160219
    Brune J N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. J Geophys Res,75(26):4997–5009. doi: 10.1029/JB075i026p04997
    Eshelby J D. 1957. The determination of the elastic field of an ellipsoidal inclusion,and related problems[J]. Proc Roy Soc A:Math Phys Eng Sci,241(1226):376–396.
    Hanks T C,Kanamori H. 1979. A moment magnitude scale[J]. J Geophys Res:Solid Earth,84(B5):2348–2350. doi: 10.1029/JB084iB05p02348
    Hartzell S H. 1978. Earthquake aftershocks as Green's functions[J]. Geophys Res Lett,5(1):1–4. doi: 10.1029/GL005i001p00001
    Holmgren J M,Atkinson G M,Ghofrani H. 2019. Stress drops and directivity of induced earthquakes in the western Canada sedimentary basin[J]. Bull Seismol Soc Am,109(5):1635–1652. doi: 10.1785/0120190035
    Ide S,Beroza G C,Prejean S G,Ellsworth W L. 2003. Apparent break in earthquake scaling due to path and site effects on deep borehole recordings[J]. J Geophys Res:Solid Earth,108(B5):2271.
    Kaneko Y,Shearer P M. 2014. Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture[J]. Geophys J Int,197(2):1002–1015. doi: 10.1093/gji/ggu030
    Konno K,Ohmachi T. 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor[J]. Bull Seismol Soc Am,88(1):228–241. doi: 10.1785/BSSA0880010228
    Li J Y,Zhou B G,Rong M S,Chen S,Zhou Y. 2020. Estimation of source spectra,attenuation,and site responses from strong‐motion data recorded in the 2019 Changning earthquake sequence[J]. Bull Seismol Soc Am,110(2):410–426.
    Oth A,Bindi D,Parolai S,Di Giacomo D. 2010. Earthquake scaling characteristics and the scale-(in)dependence of seismic energy-to-moment ratio:Insights from KiK-net data in Japan[J]. Geophys Res Lett,37(19):L19304.
    Pacor F,Spallarossa D,Oth A,Luzi L,Puglia R,Cantore L,Mercuri A,D’Amico M,Bindi D. 2016. Spectral models for ground motion prediction in the L’Aquila region (central Italy):Evidence for stress-drop dependence on magnitude and depth[J]. Geophys J Int,204(2):697–718. doi: 10.1093/gji/ggv448
    Trugman D T. 2020. Stress-drop and source scaling of the 2019 Ridgecrest,California,earthquake sequence[J]. Bull Seismol Soc Am,110(4):1859–1871. doi: 10.1785/0120200009
    Trugman D T,Shearer P M. 2018. Strong correlation between stress drop and peak ground acceleration for recent M1−4 earthquakes in the San Francisco bay area[J]. Bull Seismol Soc Am,108(2):929–945. doi: 10.1785/0120170245
    Viegas G,Abercrombie R E,Kim W Y. 2010. The 2002 M5 Au Sable Forks,NY,earthquake sequence:Source scaling relationships and energy budget[J]. J Geophys Res:Solid Earth,115(B7):B07310.
    Wang H W,Wen R Z. 2020. Earthquake source characteristics and S-wave propagation attenuation in the junction of the Northwest Tarim Basin and Kepingtage fold-and-thrust zone[J]. Front Earth Sci,8:567939. doi: 10.3389/feart.2020.567939
    Yoshimitsu N,Ellsworth W L,Beroza G C. 2019. Robust stress drop estimates of potentially induced earthquakes in Oklahoma:Evaluation of empirical green's function[J]. J Geophys Res:Solid Earth,124(6):5854–5866. doi: 10.1029/2019JB017483
  • Cited by

    Periodical cited type(1)

    1. 何现启,彭凌星,朱自强,鲁光银. 垂直发育裂隙介质中PP波扰动法近似反射系数研究. 科学技术与工程. 2021(28): 11971-11980 .

    Other cited types(3)

Catalog

    Article views (373) PDF downloads (112) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return