Liu R,Chen Q,Yang Y H,Zhong X,Yuan Y. 2023. Impact of dynamic stress on aftershock triggering of the 2021 Yunnan Yangbi MS6.4 earthquake. Acta Seismologica Sinica45(1):17−28. DOI: 10.11939/jass.20210157
Citation: Liu R,Chen Q,Yang Y H,Zhong X,Yuan Y. 2023. Impact of dynamic stress on aftershock triggering of the 2021 Yunnan Yangbi MS6.4 earthquake. Acta Seismologica Sinica45(1):17−28. DOI: 10.11939/jass.20210157

Impact of dynamic stress on aftershock triggering of the 2021 Yunnan Yangbi MS6.4 earthquake

More Information
  • Received Date: October 07, 2021
  • Revised Date: January 10, 2022
  • Available Online: January 10, 2023
  • Published Date: January 16, 2023
  • Based on the waveform data of IRIS teleseismic station, this paper inversed the focal rupture process of Yunnan Yangbi MS6.4 earthquake, calculated the dynamic Coulomb rupture stress change caused by fault rupture in near field and discussed the dynamic stress triggering effect of main shock on near-field aftershock activity. The results show that the evolution process of dynamic Coulomb stress is consistent with the inversion results of source fracture characteristics, and its size distribution is also well correlated with the density of seismic sequence distribution. The static and dynamic Coulomb rupture stress produced by the main shock promote the occurrence of aftershocks, but compared with the static stress, the proportion of aftershocks located in the positive Coulomb rupture stress area is increased by 21%, and the positive and negative areas of aftershocks and dynamic Coulomb stress change have better consistency. The dynamic stress can better explain the spatial characteristics of aftershocks distribution after the earthquake. Small earthquakes cluster at 10 km perpendicular to the main trunk of the earthquake sequence, which may be caused by the dominant dynamic Coulomb fracture stress produced by the main earthquake. Quantitative analysis of the dynamic stress triggering of the main shock to the aftershock shows that within one week after the main shock, eight aftershocks receiving points bigger than MS4.0 are triggered by the dynamic Coulomb rupture stress.
  • 常祖峰,常昊,李鉴林,代博洋,周青云,朱家龙,罗宗其. 2016. 维西—乔后断裂南段正断层活动特征[J]. 地震研究,39(4):579–586. doi: 10.3969/j.issn.1000-0666.2016.04.007
    Chang Z F,Chang H,Li J L,Dai B Y,Zhou Q Y,Zhu J L,Luo Z Q. 2016. The characteristic of active normal faulting of the southern segment of Weixi−Qiaohou fault[J]. Journal of Seismological Research,39(4):579–586 (in Chinese).
    郝平,刘杰,韩竹军,傅征祥. 2006. 印尼MS8.7地震对中国大陆3次后续中强地震的动应力触发研究[J]. 地震,26(3):26–36.
    Hao P,Liu J,Han Z J,Fu Z X. 2006. Dynamic stress triggering of three subsequent moderately strong earthquakes in China’s mainland following the Indonesia MS8.7 earthquake[J]. Earthquake,26(3):26–36 (in Chinese).
    冀战波,王琼,王海涛,解朝娣. 2014. 2008年新疆于田MS7.3地震对后续地震的完全库仑应力触发作用[J]. 地震学报,36(6):997–1009.
    Ji Z B,Wang Q,Wang H T,Xie C D. 2014. Impact of complete Coulomb failure stress changes of the 2008 Xinjiang Yutian MS7.3 earthquake on the subsequent earthquakes[J]. Acta Seismologica Sinica,36(6):997–1009 (in Chinese).
    李传友,张金玉,王伟,孙凯,单新建. 2021. 2021年云南漾濞 6.4 级地震发震构造分析[J]. 地震地质,43(3):706–721. doi: 10.3969/j.issn.0253-4967.2021.03.015
    Li C Y,Zhang J Y,Wang W,Sun K,Shan X J. 2021. The seismogenic fault of the 2021 Yunnan Yangbi MS6.4 earthquake[J]. Seismology and Geology,43(3):706–721 (in Chinese).
    龙锋,祁玉萍,易桂喜,吴微微,王光明,赵小艳,彭关灵. 2021. 2021年5月21日云南漾濞MS6.4地震序列重新定位与发震构造分析[J]. 地球物理学报,64(8):2631–2646.
    Long F,Qi Y P ,Yi G X,Wu W W,Wang G M,Zhao X Y,Peng G L. 2021. Relocation of the MS6.4 Yangbi earthquake sequence on May 21,2021 in Yunnan Province and its seismogenic structure analysis[J]. Chinese Journal of Geophysics,64(8):2631–2646 (in Chinese).
    缪淼,朱守彪. 2013. 2013年芦山MS7.0地震产生的静态库仑应力变化及其对余震空间分布的影响[J]. 地震学报,35(5):619–631.
    Miao M,Zhu S B. 2013. The static Coulomb stress change of the 2013 Lushan MS7.0 earthquake and its impact on the spatial distribution of aftershocks[J]. Acta Seismologica Sinica,35(5):619–631 (in Chinese).
    缪淼,朱守彪. 2016. 2014年鲁甸地震(MS=6.5)静态库仑应力变化及其影响[J]. 地震地质,38(1):169–181.
    Miao M ,Zhu S B. 2016. The static Coulomb stress change of the 2014 Ludian earthquake and its influence on the aftershocks and surrounding faults[J]. Seismology and Geology,38(1):169–181 (in Chinese).
    潘睿,姜金钟,付虹,李姣. 2019. 2017年云南漾濞MS5.1及MS4.8地震震源机制解和震源深度测定[J]. 地震研究,42(3):338–348. doi: 10.3969/j.issn.1000-0666.2019.03.005
    Pan R,Jiang J Z,Fu H,Li J. 2019. Focal mechanism and focal depth determination of Yunnan Yangbi MS5.1 and MS4.8 earthquakes in 2017[J]. Journal of Seismological Research,42(3):338–348 (in Chinese).
    盛书中,万永革,蒋长胜,卜玉菲. 2015. 2015年尼泊尔MS8.1强震对中国大陆静态应力触发影响的初探[J]. 地球物理学报,58(5):1834–1842.
    Sheng S Z,Wan Y G,Jiang C S,Bu Y F. 2015. Preliminary study on the static stress triggering effects on China mainland with the 2015 Nepal MS8.1 earthquake[J]. Chinese Journal Of Geophysics,58(5):1834–1842 (in Chinese).
    王琼,解朝娣,冀战波,刘建明. 2016. 2014年于田MS7.3地震对后续余震和远场小震活动的动态应力触发[J]. 地球物理学报,59(4):1383–1393.
    Wang Q,Xie C D,Ji Z B,Liu J M. 2016. Dynamically triggered aftershock activity and far-field microearthquakes following the 2014 MS7.3 Yutian,Xinjiang earthquake[J]. Chinese Journal of Geophysics,59(4):1383–1393 (in Chinese).
    吴建平,明跃红,王椿镛. 2004. 云南地区中小地震震源机制及构造应力场研究[J]. 地震学报,26(5):457–465. doi: 10.3321/j.issn:0253-3782.2004.05.001
    Wu J P,Ming Y H,Wang C Y. 2004. Source mechanism of small-to-moderate earthquakes and tectonic stress field in Yunnan Province[J]. Acta Seismologica Sinica,26(5):457–465 (in Chinese).
    许才军,汪建军,熊维. 2018. 地震应力触发回顾与展望[J]. 武汉大学学报信息科学版,43(12):2085–2092.
    Xu C J,Wang J J,Xiong W. 2018. Retrospection and perspective for earthquake stress triggering[J]. Geomatics and Information Science of Wuhan University,43(12):2085–2092 (in Chinese).
    杨智娴,于湘伟,郑月军,陈运泰,倪晓晞,Chan W. 2004. 中国中西部地区地震的重新定位和三维地壳速度结构[J]. 地震学报,26(1):19–19. doi: 10.3321/j.issn:0253-3782.2004.01.003
    Yang Z X,Yu X W,Zheng Y J,Chen Y T,Ni X X,Chan W. 2004. Earthquake relocation and 3-dimensional crustal structure of P-wave velocity in central-western China[J]. Acta Seismologica Sinica,26(1):19 (in Chinese).
    赵立波,赵连锋,谢小碧,曹俊兴,姚振兴. 2016. 2014年2月12日新疆于田MW7.0地震源区静态库仑应力变化和地震活动率[J]. 地球物理学报,59(10):3732–3743.
    Zhao L B,Zhao L F,Xie X B,Cao J X,Yao Z X. 2016. Static Coulomb stress changes and seismicity rate in the source region of the 12 February,2014 MW7.0 Yutian earthquake in Xinjiang,China[J]. Chinese Journal of Geophysics,59(10):3732–3743 (in Chinese).
    Bouchon M. 1981. A simple method to calculate Green’s functions for elastic layered media[J]. Bull Seism Soc Am,71(4):959–971.
    Bouchon M. 2003. A review of the discrete wavenumber method[J]. Pure Appl Geophys,160(3):445–465.
    Brodsky E E,Karakostas V,Kanamori H. 2000. A new observation of dynamically triggered regional seismicity:Earthquakes in Greece following the August 1999 Izmit,Turkey earthquake[J]. Geophys Res Lett,27(1):2741–2744.
    Cotton F,Coutant O. 1997. Dynamic stress variations due to shear faults in a plane-layered medium[J]. Geophys J Int,128(3):676–688.
    GCMT. 2021. 202105211348A Yunnan, China[DB/OL]. [2021-05-28]. https://www.globalcmt.org/.
    Harris R A. 1998. Introduction to special section:Stress triggers,stress shadows,and implications for seismic hazard[J]. J Geophys Res:Solid Earth,103(B10):24347–24358. doi: 10.1029/98JB01576
    Hartzell S H,Heaton T H. 1983. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley,California,earthquake[J]. Bull Seism Soc Am,73(6A):1553–1583.
    Hill D P,Reasenberg P A,Michael A,Arabaz W J,Beroza G,Brumbaugh D,Brune J N,Castro R,Davis S,Depolo D,Ellsworth W L,Gomberg J,Harmsen S,House L,Jackson S M,Johnston M J S,Jones L,Keller R,Malone S,Munguia L,Nava S,Pechmann J C,Sanford A,Simpson R W,Smith R B,Stark M,Stickney M,Vidal A,Walter S,Wong V,Zollweg J. 1993. Seismicity remotely triggered by the magnitude 7.3 Landers,California,earthquake[J]. Science,260(5114):1617–1623. doi: 10.1126/science.260.5114.1617
    Kilb D,Gomberg J,Bodin P. 2000. Triggering of earthquake aftershocks by dynamic stresses[J]. Nature,408:570–574.
    Meyer M,Kearnes K. 2013. Introduction to special section:Intermediaries between science,policy and the market[J]. Sci Public Policy,40(4):423–429.
    Mohamad R,Darkal A N,Seber D,Sandvol E,Gocuez F,Barazangi M. 2000. Remote earthquake triggering along the Dead Sea fault in Syria following the 1995 Gulf of Aqaba earthquake (MS=7.3)[J]. Seismological Research Letters,71(1):47–52. doi: 10.1785/gssrl.71.1.47
    Muller G. 1985. The reflectivity method:A tutorial[J]. J Geophys Int,58(1/2/3):153–174.
    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seism Soc Am,82(2):1018–1040. doi: 10.1785/BSSA0820021018
    Pollitz F F,Sacks I S. 1997. The 1995 Kobe,Japan,earthquake:A long-delayed aftershock of the offshore 1944 Tonankai and 1946 Nankaido earthquakes[J]. Bull Seisml Soc Am,87(1):1–10.
    Reasenberg P A,Simpson R W. 1992. Response of regional seismicity to the static stress change produced by the Loma-Prieta earthquake[J]. Science,255(5052):1687–1690. doi: 10.1126/science.255.5052.1687
    Steacy S,Nalbant S S,Mccloskey J,Nostro C,Scotti O,Baumont D. 2005. Onto what planes should Coulomb stress perturbations be resolved?[J]. J Geophys Res,110(B5):B05S15.
    Stein R S,King G C,Lin J. 1994. Stress triggering of the 1994 M6.7 Northridge,California,earthquake by its predecessors[J]. Science,265(5177):1432–1435. doi: 10.1126/science.265.5177.1432
    Toda S,Stein R S,Reasenberg P A,Dieterich J H,Yoshida A. 1998. Stress transferred by the 1995 MW6.9 Kobe,Japan,shock:Effect on aftershocks and future earthquake probabilities[J]. J Geophys Res:Solid Earth,103(B10):24543–24565. doi: 10.1029/98JB00765
    USGS. 2021. M6.1: 25 km NW of Dali, China[DB/OL]. [2021-05-28]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000e532/moment-tensor.
    Wu C Q,Peng Z G,Wang W J,Chen Q F. 2011. Dynamic triggering of shallow earthquakes near Beijing,China[J]. Geophys J Int,185(3):1321–1334.
  • Cited by

    Periodical cited type(13)

    1. 徐正,李勇,杨欣,赵少泽,谢成晟,赵亮,易桂喜. 四川泸定M_S6.8地震断层运动模拟与反演研究. 第四纪研究. 2024(02): 354-367 .
    2. 唐伟,苏琴,李菲菲,彭丽媛,竹任国. 基于跨断层水平形变资料的鲜水河断裂现今活动分析. 四川地震. 2023(01): 26-31 .
    3. 刘琦,李腊月,胡乐银. 北京及周边地区跨断层形变站网评估. 地震研究. 2023(04): 491-502 .
    4. 曾致,任攀虹,刘恒,栗国华. 关中地区断层形变异常与地震活动的关系. 北京测绘. 2022(11): 1508-1513 .
    5. 田晓,郑洪艳,李腊月,张超. 川滇地区主要活动断裂运动特征及地震危险性分析. 大地测量与地球动力学. 2021(06): 561-567 .
    6. 李瑞莎,张希,贾鹏,白卓立. 青藏块体东北缘跨断层异常场地比指标及其在地震预测中的应用. 地震. 2020(02): 71-81 .
    7. 王明亮,郭德科,夏修军,胡宁,李源,高家乙. 汤西断裂带土壤气体地球化学特征与跨断层短水准变化的关系. 地震地磁观测与研究. 2020(01): 71-77 .
    8. 徐东卓,苏广利,王世进,朱传宝,孙非非. 基于区域水准和跨断层资料分析云南地区地壳形变. 震灾防御技术. 2019(01): 118-128 .
    9. 赵静,任金卫,江在森,岳冲. 鲜水河断裂带三维变形特征. 地震地质. 2018(04): 818-831 .
    10. 李腊月,胡乐银,马伶俐,宋成科. 鲜水河断裂带断层蠕变观测与地震. 大地测量与地球动力学. 2017(11): 1121-1125 .
    11. 徐东卓,焦守涛,朱传宝,孙非非,管见,尹海权. 芦山Ms7.0地震前龙门山断裂带西南段区域形变特征分析及发震模型探讨. 地质学报. 2017(10): 2175-2184 .
    12. 徐东卓,李胜虎,周海涛,王阅兵,王世进. 川滇地块南部主要断裂现今形变特征及危险性分析. 震灾防御技术. 2017(03): 539-546 .
    13. 王世进,张超,刘文龙,苏广利. 利用跨断层资料研究首都圈地区断层活动特征及地震危险性. 震灾防御技术. 2017(03): 547-556 .

    Other cited types(4)

Catalog

    Article views (371) PDF downloads (127) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return