Pan Q,Shen X Z. 2023. Spatial autocorrelation method based on dense short-period seismic array and its application in the Guangdong-Hong Kong-Macao Greater Bay. Acta Seismologica Sinica45(2):246−257. DOI: 10.11939/jass.20220003
Citation: Pan Q,Shen X Z. 2023. Spatial autocorrelation method based on dense short-period seismic array and its application in the Guangdong-Hong Kong-Macao Greater Bay. Acta Seismologica Sinica45(2):246−257. DOI: 10.11939/jass.20220003

Spatial autocorrelation method based on dense short-period seismic array and its application in the Guangdong-Hong Kong-Macao Greater Bay

More Information
  • Received Date: January 05, 2022
  • Revised Date: February 21, 2022
  • Available Online: February 23, 2023
  • Published Date: March 14, 2023
  • Based on spatial autocorrelation (SPAC) method, the dispersion curves of Rayleigh wave have been extracted from the microtremor recorded by 21 stations belong to the dense short-period array deployed in Guangdong-Hong Kong-Macao Greater Bay area, and then the inversion for shallow S-wave velocity structures within a depth of 1 km beneath the Panyu district, Guangzhou city, have been performed. The results show that the velocity beneath the array is obviously low within 0.25 km depth, ranging from 1.17 km/s to 1.59 km/s, while the velocity increases steadily to 2.88 km/s between 0.25 km to 1 km depth. This indicates that the stability and the reliability of the method, which also implies that the SPAC is an effective, economical and environmental method for detecting the shallow fine structures in densely populated urban areas, and it will play an increasingly important role in the exploration of shallow structure in urban areas in the future.
  • 雷华,潘素珍,田晓峰,刘巧霞. 2019. 短周期密集台阵探测的应用进展[J]. 地质论评,65(增刊1):287–288. doi: 10.16509/j.georeview.2019.s1.135
    Lei H,Pan S Z,Tian X F,Liu Q X. 2019. Recent application progress of short-period seismic dense array[J]. Geological Review,65(S1):287–288 (in Chinese).
    刘庆华,鲁来玉,何正勤,胡刚,王凯明,龚艳. 2016. 地脉动空间自相关方法反演浅层S波速度结构[J]. 地震学报,38(1):86–95. doi: 10.11939/jass.2016.01.008
    Liu Q H,Lu L Y,He Z Q,Hu G,Wang K M,Gong Y. 2016. Inversion of S-wave velocity structure near the surface by spatial autocorrelation technique of microtremors[J]. Acta Seismologica Sinica,38(1):86–95 (in Chinese).
    裴文. 2011. 广州亚运城场区地层土性相关关系研究[D]. 广州: 华南理工大学: 35–37.
    Pei W. 2011. A Study of the Correlations Between Different Characteristic Index of Strata Soils in the Area of Asia Game Town, Guangzhou[D]. Guangzhou: South China University of Technology: 35–37 (in Chinese).
    任彦宗,卢占武,张新彦,薛帅,刘子龙,程永志,蔡玉国. 2021. 便携式节点地震仪数据采集和处理技术进展[J]. 地球物理学进展,36(2):779–791. doi: 10.6038/pg2021EE0097
    Ren Y Z,Lu Z W,Zhang X Y,Xue S,Liu Z L,Cheng Y Z,Cai Y G. 2021. Progress in data acquisition and processing technology of portable node seismographs[J]. Progress in Geophysics,36(2):779–791 (in Chinese).
    孙勇军,徐佩芬,凌甦群,李传金. 2009. 微动勘查方法及其研究进展[J]. 地球物理学进展,24(1):326–334.
    Sun Y J,Xu P F,Ling S Q,Li C J. 2009. Microtremor survey method and its progress[J]. Progress in Geophysics,24(1):326–334 (in Chinese).
    王振东. 1990. 微动应用技术讲座(第一讲)[J]. 国外地质勘探技术,(4):12–16.
    Wang Z D. 1990. The lecture on microtremor application technology (chapter one)[J]. Foreign Geoexploration Technology,(4):12–16 (in Chinese).
    徐佩芬,李传金,凌甦群,张胤彬,侯超,孙勇军. 2009. 利用微动勘察方法探测煤矿陷落柱[J]. 地球物理学报,52(7):1923–1930. doi: 10.3969/j.issn.0001-5733.2009.07.028
    Xu P F,Li C J,Ling S Q,Zhang Y B,Hou C,Sun Y J. 2009. Mapping collapsed columns in coal mines utilizing microtremor survey methods[J]. Chinese Journal of Geophysics,52(7):1923–1930 (in Chinese).
    徐佩芬,侍文,凌甦群,郭慧丽,李志华. 2012. 二维微动剖面探测“孤石”:以深圳地铁7号线为例[J]. 地球物理学报,55(6):2120–2128. doi: 10.6038/j.issn.0001-5733.2012.06.034
    Xu P F,Shi W,Ling S Q,Guo H L,Li Z H. 2012. Mapping spherically weathered ‘Boulders’ using 2D microtremor profiling method:A case study along subway line 7 in Shenzhen[J]. Chinese Journal of Geophysics,55(6):2120–2128 (in Chinese).
    Aki K. 1957. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bull Earthq Res Inst,35(3):415–456.
    Asten M W. 2006. On bias and noise in passive seismic data from finite circular array data processed using SPAC methods[J]. Geophysics,71(6):V153–V162. doi: 10.1190/1.2345054
    Asten M W,Stephenson W J,Hartzell S. 2019. Spatially averaged coherencies (krSPAC) and Rayleigh effective-mode modeling of microtremor data from asymmetric arrays[J]. Geophysics,84(3):EN47–EN56. doi: 10.1190/geo2018-0524.1
    Capon J. 1969. High-resolution frequency-wavenumber spectrum analysis[J]. Proc IEEE,57(8):1408–1418. doi: 10.1109/PROC.1969.7278
    Herrmann R B, Ammon C J. 2002. Computer programs in seismology: Surface waves, receiver functions and crustal structure[CP/OL]. [2015-02-18]. http://www.eas.slu.edu/eqc/eqccps.html.
    Li Z W,Ni S D,Zhang B L,Bao F,Zhang S Q,Deng Y,Yuen D A. 2016. Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array[J]. Geophys Res Lett,43(10):4954–4961. doi: 10.1002/2016GL068895
    Li Z W,Ni S D,Roecker S,Bao F,Wei X,Yuen D A. 2018. Seismic imaging of source region in the 1976 MS7.8 Tangshan earthquake sequence and its implications for the seismogenesis of intraplate earthquakes[J]. Bull Seismol Soc Am,108(3A):1302–1313. doi: 10.1785/0120170389
    Lin F C,Li D Z,Clayton R W,Hollis D. 2013. High-resolution 3D shallow crustal structure in Long Beach,California:Application of ambient noise tomography on a dense seismic array[J]. Geophysics,78(4):Q45–Q56. doi: 10.1190/geo2012-0453.1
    Okada H, Suto K. 2003. The Microtremor Survey Method[M]. Tulsa: Society of Exploration Geophysicists with the cooperation of Society of Exploration Geophysicists of Japan and Australian Society of Exploration Geophysicists: 40–45.
    Okada H. 2006. Theory of efficient array observations of microtremors with special reference to the SPAC method[J]. Explor Geophys,37(1):73–85. doi: 10.1071/EG06073
    Roux P,Moreau L,Lecointre A,Hillers G,Campillo M,Ben-Zion Y,Zigone D,Vernon F. 2016. A methodological approach towards high-resolution surface wave imaging of the San Jacinto fault zone using ambient-noise recordings at a spatially dense array[J]. Geophys J Int,206(2):980–992. doi: 10.1093/gji/ggw193
    Savitzky A,Golay M J E. 1964. Smoothing and differentiation of data by simplified least squares procedures[J]. Anal Chem,36(8):1627–1639. doi: 10.1021/ac60214a047
    Wei Y H,Tian X B,Duan Y H,Tian X F. 2018. Imaging the topography of crust-mantle boundary from a high-density seismic array beneath the middle-lower Yangtze River,eastern China[J]. Seismol Res Lett,89(5):1690–1697. doi: 10.1785/0220180045
    Wessel P, Luis J F, Uieda L, Scharroo R, Wobbe F, Smith W H F, Tian D. 2019. The Generic Mapping Tools version 6[J]. Geochem Geophys Geosyst, 20(11): 5556–5564.
    Xia J H,Miller R D,Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics,64(3):691–700. doi: 10.1190/1.1444578
  • Cited by

    Periodical cited type(4)

    1. 李继业,胡澜缤,康健,李营,王强,孙强,张雁翔. 松辽盆地主要发震构造土壤氢气地球化学特征. 地震. 2023(01): 152-170 .
    2. 胡宁,马志敏,娄露玲,王宇,张宝山,王明亮,陈蒙,郭德科. 汤阴地堑南部土壤Rn空间分布特征. 地震学报. 2022(03): 489-500 . 本站查看
    3. 胡宁,娄露玲,马志敏,王明亮,张宝山,王宇,陈蒙,郭德科. 河南省汤阴地堑南部土壤H_2浓度及其与构造关系. 地震工程学报. 2022(05): 1207-1215 .
    4. 娄露玲,胡宁,王宇,张宝山,马志敏,王明亮. 汤阴地堑南部土壤CO_2空间分布特征. 华北地震科学. 2020(04): 34-41 .

    Other cited types(2)

Catalog

    Article views (569) PDF downloads (153) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return