Wang Q,Xiao Z,Wu Y,Li S Y,Gao Y. 2022. The deep tectonic background of the MS6.9 Menyuan earthquake on January 8,2022 in Qinghai Province. Acta Seismologica Sinica44(2):211−222. DOI: 10.11939/jass.20220010
Citation: Wang Q,Xiao Z,Wu Y,Li S Y,Gao Y. 2022. The deep tectonic background of the MS6.9 Menyuan earthquake on January 8,2022 in Qinghai Province. Acta Seismologica Sinica44(2):211−222. DOI: 10.11939/jass.20220010

The deep tectonic background of the MS6.9 Menyuan earthquake on January 8,2022 in Qinghai Province

More Information
  • Received Date: January 22, 2022
  • Revised Date: February 12, 2022
  • Available Online: February 22, 2022
  • Published Date: April 23, 2022
  • On January 8, 2022, the Menyuan MS6.9 earthquake occurred on the Lenglongling fault in Qinghai Province. Combining the data of crustal thickness, velocity structure and anisotropy, we discussed the deep structural characteristics of the Menyuan earthquake, and revealed that the location of the Menyuan earthquake is closely related to the structural variations in the crust. The results show that, Menyuan MS6.9 earthquake occurred in the area where both the crustal thickness and vP/vS ratio showed rapid spatial changes. Roughly in the depth range of 10−20 km, the hypocenter is located in the vertical transition zone from shallow to deep where the P-wave velocity changed from high to low, and also the S-wave velocity and Poisson’s ratio distribution show obvious lateral changes and there is a clear low-velocity zone beneath the hypocenter; the variation of azimuthal anisotropy of phase velocity on both sides of the Lenglongling fault is relatively obvious. The epicenter of the MS5.2 aftershock on January 12 was close to that of the 2016 MS6.4 earthquake, revealing that the Menyuan MS6.9 earthquake and its aftershocks caused a relatively sufficient rupture of the Lenglongling fault. Between the two Menyuan earthquakes and its adjacent areas, it is difficult to accumulate more energy in a short time, so it is unlikely that a larger earthquake will occur in a short time. The continuous northward expansion of the northeastern margin of the Qinghai-Tibet Plateau leads to surface uplifting and crustal thickening, which is the main tectonic cause of frequent strong earthquakes in this region.
  • 房立华,吴建平,吕作勇. 2009. 华北地区基于噪声的瑞利面波群速度层析成像[J]. 地球物理学报,52(3):663–671.
    Fang L H,Wu J P,Lü Z Y. 2009. Rayleigh wave group velocity tomography from ambient seismic noise in North China[J]. Chinese Journal of Geophysics,52(3):663–671 (in Chinese). doi: 10.1002/cjg2.1388
    高原,滕吉文. 2005. 中国大陆地壳与上地幔地震各向异性研究[J]. 地球物理学进展,20(1):180–185. doi: 10.3969/j.issn.1004-2903.2005.01.032
    Gao Y,Teng J W. 2005. Studies on seismic anisotropy in the crust and mantle on Chinese mainland[J]. Progress in Geophysics,20(1):180–185 (in Chinese).
    高锐,李廷栋,吴功建. 1998. 青藏高原岩石圈演化与地球动力学过程:亚东—格尔木—额济纳旗地学断面的启示[J]. 地质论评,44(4):389–395. doi: 10.3321/j.issn:0371-5736.1998.04.008
    Gao R,Li T D,Wu G J. 1998. Lithospheric evolution and geodynamic process of the Qinghai-Tibet Plateau:An inspiration from the Yadong-Golmud-Ejin geoscience transect[J]. Geological Review,44(4):389–395 (in Chinese).
    郭瑛霞. 2017. 祁连山主动源台阵背景噪声面波三维成像[D]. 兰州: 中国地震局兰州地震研究所: 42–47.
    Guo Y X. 2017. Background Noise Surface Wave for Three-Dimensional Velocity Structure Based on the Qilian Mountain Active Source Array[D]. Lanzhou: Lanzhou Institute of Seismology, China Earthquake Administration: 42–47 (in Chinese).
    胡朝忠,杨攀新,李智敏,黄帅堂,赵妍,陈丹,熊仁伟,陈庆宇. 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报,59(5):1637–1646. doi: 10.6038/cjg20160509
    Hu C Z,Yang P X,Li Z M,Huang S T,Zhao Y,Chen D,Xiong R W,Chen Q Y. 2016. Seismogenic mechanism of the 21 January 2016 Menyuan,Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics,59(5):1637–1646 (in Chinese).
    兰州地震研究所青海省地震局联合考察队. 1987. 1986年8月26日门源6.4级地震考察初步总结[J]. 西北地震学报,9(2):75–80.
    Lanzhou Institute of Seismology,Seismological Bureau of Qinghai Province. 1987. A preliminary summarization of Menyuan earthquake (M=6.4) on Aug. 26,1986[J]. Northwestern Seismological Journal,9(2):75–80.
    李永华,徐小明,张恩会,高家乙. 2014. 青藏高原东南缘地壳结构及云南鲁甸、景谷地震深部孕震环境[J]. 地震地质,36(4):1204–1216. doi: 10.3969/j.issn.0253-4967.2014.04.021
    Li Y H,Xu X M,Zhang E H,Gao J Y. 2014. Three-dimensional crust structure beneath SE Tibetan Plateau and its seismotectonic implications for the Ludian and Jinggu earthquakes[J]. Seismology and Geology,36(4):1204–1216 (in Chinese).
    梁姗姗,雷建设,徐志国,邹立晔,刘敬光. 2017. 2016年1月21日青海门源MS6.4余震序列重定位和主震震源机制解[J]. 地球物理学报,60(6):2091–2103. doi: 10.6038/cjg20170606
    Liang S S,Lei J S,Xu Z G,Zou L Y,Liu J G. 2017. Relocation of the aftershock sequence and focal mechanism solutions of the 21 January 2016 Menyuan,Qinghai,MS6.4 earthquake[J]. Chinese Journal of Geophysics,60(6):2091–2103 (in Chinese).
    王椿镛,林中洋,陈学波. 1995. 青海门源—福建宁德地学断面综合地球物理研究[J]. 地球物理学报,38(5):590–598. doi: 10.3321/j.issn:0001-5733.1995.05.005
    Wang C Y,Lin Z Y,Chen X B. 1995. Comprehensive study of geophysics on geoscience transect from Menyuan,Qinghai Province,to Ningde,Fujian Province,China[J]. Chinese Journal of Geophysics,38(5):590–598 (in Chinese).
    王琼,高原. 2014. 青藏东南缘背景噪声的瑞利波相速度层析成像及强震活动[J]. 中国科学:地球科学,44(11):2440–2450.
    Wang Q,Gao Y. 2014. Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau[J]. Science China Earth Sciences,57(10):2532–2542. doi: 10.1007/s11430-014-4908-2
    王琼,高原. 2018. 基于背景噪声研究青藏高原东北缘瑞利波相速度和方位各向异性[J]. 地球物理学报,61(7):2760–2775. doi: 10.6038/cjg2018L0509
    Wang Q,Gao Y. 2018. Rayleigh wave phase velocity and azimuthal anisotropy in the northeastern margin of the Tibetan Plateau derived from seismic ambient noise[J]. Chinese Journal of Geophysics,61(7):2760–2775 (in Chinese).
    王新胜,方剑,许厚泽. 2013. 青藏高原东北缘岩石圈三维密度结构[J]. 地球物理学报,56(11):3770–3778. doi: 10.6038/cjg20131118
    Wang X S,Fang J,Xu H Z. 2013. 3D density structure of lithosphere beneath northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,56(11):3770–3778 (in Chinese).
    吴立辛,杨明芝,赵卫明,傅容珊,朱良保,施行觉. 2011. 利用重力多尺度分解资料反演青藏高原东北缘地壳厚度[J]. 大地测量与地球动力学,31(1):19–23.
    Wu L X,Yang M Z,Zhao W M,Fu R S,Zhu L B,Shi X J. 2011. Crust thickness inversed from multi-scale decomposition of Bouguer gravity anomalies in northeastern of Qinghai-Tibet Plateau[J]. Journal of Geodesy and Geodynamics,31(1):19–23 (in Chinese).
    夏思茹,石磊,李永华,郭良辉. 2021. 青藏高原东北缘地壳及上地幔顶部速度结构研究[J]. 地球物理学报,64(9):3194–3206. doi: 10.6038/cjg2021O0514
    Xia S R,Shi L,Li Y H,Guo L H. 2021. Velocity structures of the crust and uppermost mantle beneath the northeastern margin of Tibetan Plateau revealed by double-difference tomography[J]. Chinese Journal of Geophysics,64(9):3194–3206 (in Chinese).
    肖卓,高原. 2017. 利用双差成像方法反演青藏高原东北缘及其邻区地壳速度结构[J]. 地球物理学报,60(6):2213–2225. doi: 10.6038/cjg20170615
    Xiao Z,Gao Y. 2017. Crustal velocity structure beneath the northeastern Tibetan Plateau and adjacent regions derived from double difference tomography[J]. Chinese Journal of Geophysics,60(6):2213–2225 (in Chinese).
    许忠淮. 2001. 东亚地区现今构造应力图的编制[J]. 地震学报,23(5):492–501. doi: 10.3321/j.issn:0253-3782.2001.05.005
    Xu Z H. 2001. A present-day tectonic stress map for eastern Asia region[J]. Acta Seismologica Sinica,23(5):492–501 (in Chinese).
    袁道阳,张培震,刘百篪,甘卫军,毛凤英,王志才,郑文俊,郭华. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报,78(2):270–278. doi: 10.3321/j.issn:0001-5717.2004.02.017
    Yuan D Y,Zhang P Z,Liu B C,Gan W J,Mao F Y,Wang Z C,Zheng W J,Guo H. 2004. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica,78(2):270–278 (in Chinese).
    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D辑,33(增刊):12–20.
    Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F J,Wang Q. 2003. Strong earthquake activity and active blocks in China[J]. Science in China:Series D,33(Sl):12–20 (in Chinese).
    赵凌强,詹艳,孙翔宇,郝明,祝意青,陈小斌,杨皓. 2019. 利用大地电磁技术揭示2016年1月21日青海门源MS6.4地震隐伏地震构造和孕震环境[J]. 地球物理学报,62(6):2008–2100.
    Zhao L Q,Zhan Y,Sun X Y,Hao M,Zhu Y Q,Chen X B,Yang H. 2019. The hidden seismogenic structure and dynamic environment of the 21 January Menyuan,Qinghai,MS6.4 earthquake derived from magnetotelluric imaging[J]. Chinese Journal of Geophysics,62(6):2008–2100 (in Chinese).
    中国地震局地球物理研究所. 2022. 2022年1月8日青海海北州门源县6.9级地震科技支撑简报[EB/OL]. [2022-01-10]. https://www.cea-igp.ac.cn/kydt/278809.html.
    Institute of Geophysics, China Earthquake Administration. 2022. Science and technology support for the M6.9 earthquake in Menyuan County, Haibei Prefecture, Qinghai Province on January 8, 2022[EB/OL]. [2022-01-10]. https://www.cea-igp.ac.cn/kydt/278809.html (in Chinese).
    中国地震局地质研究所. 2022. 2022年1月8日青海门源6.9级地震的一些初步认识[EB/OL]. [2022-01-18]. https://www.eq-igl.ac.cn/zhxw/info/2022/36632.html.
    Institute of Geology, China Earthquake Administration. 2022. Some preliminary understanding of the Qinghai Menyuan M6.9 earthquake on January 8, 2022[EB/OL]. [2022-01-18]. https://www.eq-igl.ac.cn/zhxw/info/2022/36632.html (in Chinese).
    中国地震台网中心. 2022. 1月8日1时45分在青海海北州门源县发生6.9级地震[EB/OL]. [2022-01-08]. https://www.cenc.ac.cn/cenc/dzxx/396391/index.html.
    China Earthquake Networks Center. 2022. An earthquake with MS6.9 occurred in Menyuan County, Haibei Prefecture, Qinghai Province, at 1:45 on January 8[EB/OL]. [2022-01-08]. https://www.cenc.ac.cn/cenc/dzxx/396391/index.html (in Chinese).
    祝意青,李铁明,郝明,梁伟锋,赵云峰,徐云马,郝庆花. 2016. 2016年青海门源MS6.4地震前重力变化[J]. 地球物理学报,59(10):3744–3752. doi: 10.6038/cjg20161019
    Zhu Y Q,Li T M,Hao M,Liang W F,Zhao Y F,Xu Y M,Hao Q H. 2016. Gravity changes before the Menyuan,Qinghai MS6.4 earthquake of 2016[J]. Chinese Journal of Geophysics,59(10):3744–3752 (in Chinese).
    Fan L P,Li B R,Liao S R,Jiang C,Fang L H. 2022. Precise relocation of the aftershock sequences of the 2022 M6.9 Menyuan earthquake[J]. Earthquake Science,35(3):Q20220008. doi: 10.1016/j.eqs.2022.01.021
    Gao R, Cheng X Z, Wu G J. 1996. Lithospheric structure and geodynamic model of the Golmud-Ejin transect in northern Tibet[G]//Himalaya and Tibet: Mountain Roots to Mountain Tops. New York: Geological Society of America: 36–40.
    Gaudemer Y,Tapponnier P,Meyer B,Peltzer G,Guo S M,Chen Z T,Dai H,Cifuentes I. 1995. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu gap’,on the western Haiyuan fault,Gansu (China)[J]. Geophys J Int,120(3):599–645. doi: 10.1111/j.1365-246X.1995.tb01842.x
    Jin H L,Gao Y,Su X N,Fu G Y. 2019. Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data[J]. Earth Planet Phys,3(1):55–63.
    Lasserre C,Gaudemer Y,Tapponnier P,Mériaux A S,van der Woerd J,Yuan D Y,Ryerson F J,Finkel R C,Caffee M W. 2002. Fast Late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault,Qinghai,China[J]. J Geophys Res:Solid Earth,107(B11):2276. doi: 10.1029/2000JB000060
    Li Y H,Pan J T,Wu Q J,Ding Z F. 2017. Lithospheric structure beneath the northeastern Tibetan Plateau and the western Sino-Korea Craton revealed by Rayleigh wave tomography[J]. Geophys J Int,210(2):570–587. doi: 10.1093/gji/ggx181
    Shi Y T,Gao Y,Shen X Z,Liu K H. 2020. Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan Plateau and tectonic implications of the Haiyuan fault[J]. Tectonophysics,774:228274. doi: 10.1016/j.tecto.2019.228274
    Tian X B,Bai Z M,Klemperer S L,Liang X F,Liu Z,Wang X,Yang X S,Wei Y H,Zhu G H. 2021. Crustal-scale wedge tectonics at the narrow boundary between the Tibetan Plateau and Ordos block[J]. Earth Planet Sci Lett,554:116700. doi: 10.1016/j.jpgl.2020.116700
    Wang Q,Niu F L,Gao Y,Chen Y T. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan Plateau constrained by teleseismic receiver function data[J]. Geophys J Int,204(1):167–179. doi: 10.1093/gji/ggv420
    Wang X C,Li Y H,Ding Z F,Zhu L P,Wang C Y,Bao X W,Wu Y. 2017. Three-dimensional lithospheric S wave velocity model of the NE Tibetan Plateau and western North China Craton[J]. J Geophys Res:Solid Earth,122(8):6703–6720. doi: 10.1002/2017JB014203
    Wang Y. 2001. Heat flow pattern and lateral variations of lithosphere strength in China mainland:Constraints on active deformation[J]. Phys Earth Planet Inter,126(3/4):121–146. doi: 10.1016/S0031-9201(01)00251-5
    Wu Y,Gao Y. 2019. Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes[J]. Earth Planet Phys,3(5):425–434. doi: 10.26464/epp2019044
    Yao H J,van der Hilst R D,de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis:I. Phase velocity maps[J]. Geophys J Int,166(2):732–744. doi: 10.1111/j.1365-246X.2006.03028.x
    Yin A,Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu Rev Earth Pl Sc,28:211–280. doi: 10.1146/annurev.earth.28.1.211
    Zhang P Z,Shen Z,Wang M,Gan W J,Bürgmann R,Molnar P,Wang Q,Niu Z J,Sun J Z,Wu J C,Sun H R,You X Z. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology,32(9):809–812. doi: 10.1130/G20554.1
    Zhao D P,Mishra O P,Sanda R. 2002. Influence of fluids and magma on earthquakes:Seismological evidence[J]. Phys Earth Planet Inter,132(4):249–267. doi: 10.1016/S0031-9201(02)00082-1
    Zheng W J,Zhang P Z,He W G,Yuan D Y,Shao Y X,Zheng D W,Ge W P,Min W. 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau:Evidence from decadal GPS measurements and Late Quaternary slip rates on faults[J]. Tectonophysics,584:267–280. doi: 10.1016/j.tecto.2012.01.006
  • Related Articles

Catalog

    Article views (959) PDF downloads (232) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return