Citation: | Wang P,Feng X P,Zhang G H,Pan L,Chen X F. 2023. Lithospheric velocity structure of central Turkey based on ambient noise surface tomography. Acta Seismologica Sinica,45(4):609−627. DOI: 10.11939/jass.20220030 |
李雪燕,陈晓非,杨振涛,王冰,杨博. 2020. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报,63(1):247–255.
|
Li X Y,Chen X F,Yang Z T,Wang B,Yang B. 2020. Application of high-order surface waves in shallow exploration:An example of the Suzhou river,Shanghai[J]. Chinese Journal of Geophysics,63(1):247–255 (in Chinese).
|
孙楠,潘磊,王伟涛,叶泵,王彬,陈晓非. 2021. 多尺度阵列嵌套组合反演宾川气枪源区横波速度结构[J]. 地球物理学报,64(11):4012–4021.
|
Sun N,Pan L,Wang W T,Ye B,Wang B,Chen X F. 2021. Inversion of shear wave velocity structure beneath the Binchuan airgun source area using a nested combination of multi-scale arrays[J]. Chinese Journal of Geophysics,64(11):4012–4021 (in Chinese).
|
吴华礼,陈晓非,潘磊. 2019. 基于频率-贝塞尔变换法的关东盆地S波速度成像[J]. 地球物理学报,62(9):3400–3407.
|
Wu H L,Chen X F,Pan L. 2019. S-wave velocity imaging of the Kanto basin in Japan using the frequency-Bessel transformation method[J]. Chinese Journal of Geophysics,62(9):3400–3407 (in Chinese).
|
Abgarmi B,Delph J R,Ozacar A A,Beck S L,Zandt G,Sandvol E,Turkelli N,Biryol C B. 2017. Structure of the crust and African slab beneath the central Anatolian plateau from receiver functions:New insights on isostatic compensation and slab dynamics[J]. Geosphere,13(6):1774–1787. doi: 10.1130/GES01509.1
|
Adiyaman Ö,Chorowicz J,Arnaud O N,Gündogdu M N,Gourgaud A. 2001. Late Cenozoic tectonics and volcanism along the North Anatolian fault:New structural and geochemical data[J]. Tectonophysics,338(2):135–165. doi: 10.1016/S0040-1951(01)00131-7
|
Al-Lazki A I,Seber D,Sandvol E,Turkelli N,Mohamad R,Barazangi M. 2003. Tomographic Pn velocity and anisotropy structure beneath the Anatolian Plateau (eastern Turkey) and the surrounding regions[J]. Geophys Res Lett,30(24):8043.
|
Al-Lazki A I,Sandvol E,Seber D,Barazangi M,Turkelli N,Mohamad R. 2004. Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian,Eurasian and African plates[J]. Geophys J Int,158(3):1024–1040. doi: 10.1111/j.1365-246X.2004.02355.x
|
Ates A,Kearey P,Tufan S. 1999. New gravity and magnetic anomaly maps of Turkey[J]. Geophys J Int,136(2):499–502. doi: 10.1046/j.1365-246X.1999.00732.x
|
Bakırcı T,Yoshizawa K,Özer M F. 2012. Three-dimensional S-wave structure of the upper mantle beneath Turkey from surface wave tomography[J]. Geophys J Int,190(2):1058–1076. doi: 10.1111/j.1365-246X.2012.05526.x
|
Bartol J,Govers R. 2014. A single cause for uplift of the Central and Eastern Anatolian plateau?[J]. Tectonophysics,637:116–136. doi: 10.1016/j.tecto.2014.10.002
|
Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x
|
Biryol C B, Beck S L, Zandt G, Özacar A A. 2011. Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography[J]. Geophys J Int,184(3):1037–1057. doi: 10.1111/j.1365-246X.2010.04910.x
|
Bozkurt E. 2001. Neotectonics of Turkey:A synthesis[J]. Geodinam Acta,14(1/2/3):3–30. doi: 10.1080/09853111.2001.11432432
|
Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust[J]. Bull Seismol Soc Am,95(6):2081–2092. doi: 10.1785/0120050077
|
Cosentino D,Schildgen T F,Cipollari P,Faranda C,Gliozzi E,Hudáčková N,Lucifora S,Strecker M R. 2012. Late Miocene surface uplift of the southern margin of the central Anatolian Plateau,central Taurides,Turkey[J]. Geolog Soc Am Bull,124(1/2):133–145. doi: 10.1130/B30466.1
|
Delph J R,Biryol C B,Beck S L,Zandt G,Ward K M. 2015. Shear wave velocity structure of the Anatolian Plate:Anomalously slow crust in southwestern Turkey[J]. Geophys J Int,202(1):261–276. doi: 10.1093/gji/ggv141
|
Delph J R,Abgarmi B,Ward K M,Beck S L,Özacar A A,Zandt G,Sandvol E,Türkelli N,Kalafat D. 2017. The effects of subduction termination on the continental lithosphere:Linking volcanism,deformation,surface uplift and slab tearing in central Anatolia[J]. Geosphere,13(6):1788–1805. doi: 10.1130/GES01478.1
|
Fichtner A,Saygin E,Taymaz T,Cupillard P,Capdeville Y,Trampert J. 2013. The deep structure of the North Anatolian fault zone[J]. Earth Planet Sci Lett,373:109–117. doi: 10.1016/j.jpgl.2013.04.027
|
Fichtner A, Rickers F, Cubuk-Sabuncu Y, Blom N, Gokhberg A. 2019. European part of the Collaborative seismic Earth model (version 2019.12. 01)[EB/OL]. [2021-12-08]. https://ds.iris.edu/spud/earthmodel/180227090.
|
Gans C R,Beck S L,Zandt G,Biryol C B,Ozacar A A. 2009. Detecting the limit of slab break-off in central Turkey:New high-resolution Pn tomography results[J]. Geophys J Int,179(3):1566–1572. doi: 10.1111/j.1365-246X.2009.04389.x
|
Govers R,Fichtner A. 2016. Signature of slab fragmentation beneath Anatolia from full-waveform tomography[J]. Earth Planet Sci Lett,450:10–19. doi: 10.1016/j.jpgl.2016.06.014
|
Kaviani A,Paul A,Moradi A,Mai P M,Pilia S,Boschi L,Rümpker G,Lu Y,Tang Z,Sandvol E. 2020. Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography[J]. Geophys J Int,221(2):1349–1365. doi: 10.1093/gji/ggaa075
|
Kounoudis R,Bastow I D,Ogden C S,Goes S,Jenkins J,Grant B,Braham C. 2020. Seismic tomographic imaging of the Eastern Mediterranean mantle:Implications for terminal‐stage subduction,the uplift of Anatolia and the development of the North Anatolian fault[J]. Geochem Geophys Geosyst,21(7):e2020GC009009.
|
Legendre C P,Zhao L,Tseng T L. 2021. Large-scale variation in seismic anisotropy in the crust and upper mantle beneath Anatolia,Turkey[J]. Commun Earth Environ,2:73. doi: 10.1038/s43247-021-00142-6
|
Li Z B,Zhou J,Wu G X,Wang J N,Zhang G H,Dong S,Pan L,Yang Z T,Gao L N,Ma Q B,Ren H X,Chen X F. 2021. CC‐FJpy:A python package for extracting overtone surface‐wave dispersion from seismic ambient‐noise cross correlation[J]. Seismol Res Lett,92(5):3179–3186. doi: 10.1785/0220210042
|
Medved I,Polat G,Koulakov I. 2021. Crustal structure of the eastern Anatolia region (Turkey) based on seismic tomography[J]. Geosciences,11(2):91. doi: 10.3390/geosciences11020091
|
Pan L,Chen X F,Wang J N,Yang Z T,Zhang D Z. 2019. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes[J]. Geophys J Int,216(2):1276–1303. doi: 10.1093/gji/ggy479
|
Portner D E,Delph J R,Biryol C B,Beck S L,Zandt G,Özacar A A,Sandvol E,Türkelli N. 2018. Subduction termination through progressive slab deformation across eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia[J]. Geosphere,14(3):907–925. doi: 10.1130/GES01617.1
|
Rojay B,Heimann A,Toprak V. 2001. Neotectonic and volcanic characteristics of the Karasu fault zone (Anatolia,Turkey):The transition zone between the Dead Sea transform and the East Anatolian fault zone[J]. Geodinam Acta,14(1/2/3):197–212.
|
Sánchez-Sesma F J,Campillo M. 2006. Retrieval of the Green’s function from cross correlation:The canonical elastic problem[J]. Bull Seismol Soc Am,96(3):1182–1191. doi: 10.1785/0120050181
|
Schleiffarth W K,Darin M H,Reid M R,Umhoefer P J. 2018. Dynamics of episodic Late Cretaceous-Cenozoic magmatism across Central to Eastern Anatolia:New insights from an extensive geochronology compilation[J]. Geosphere,14(5):1990–2008. doi: 10.1130/GES01647.1
|
Schultz C A,Myers S C,Hipp J,Young C J. 1998. Nonstationary Bayesian Kriging:A predictive technique to generate spatial corrections for seismic detection location and identification[J]. Bull Seismol SocAm,88(5):1275–1288. doi: 10.1785/BSSA0880051275
|
Şengör A M C,Yilmaz Y. 1981. Tethyan evolution of Turkey:A plate tectonic approach[J]. Tectonophysics,75(3/4):181–190.
|
Şengör A M C,Tüysüz O,Imren C,İmren C,Sakınç M,Eyidoğan H,Görür N,Le Pichon X,Rangin C. 2005. The North Anatolian fault:A new look[J]. Annu Rev Earth Planet Sci,33(1):37–112. doi: 10.1146/annurev.earth.32.101802.120415
|
Shen W S,Ritzwoller M H,Schulte-Pelkum V,Lin F C. 2013. Joint inversion of surface wave dispersion and receiver functions:A Bayesian Monte-Carlo approach[J]. Geophys J Int,192(2):807–836. doi: 10.1093/gji/ggs050
|
Uslular G,Corvec N L,Mazzarini F,Legrand D,Gençalioğlu-Kuşcua G. 2021. Morphological and multivariate statistical analysis of Quaternary monogenetic vents in the Central Anatolian Volcanic Province (Turkey):Implications for the volcano-tectonic evolution[J]. J Volcan Geotherm Res,416:107280. doi: 10.1016/j.jvolgeores.2021.107280
|
van Hunen J,Allen M B. 2011. Continental collision and slab break-off:A comparison of 3-D numerical models with observations[J]. Earth Planet Sci Lett,302(1/2):27–37. doi: 10.1016/j.jpgl.2010.11.035
|
Wang J N,Wu G X,Chen X F. 2019. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. J Geophys Res:Solid Earth,124(4):3708–3723. doi: 10.1029/2018JB016595
|
Warren L M,Beck S L,Biryol C B,Zandt G,Özacar A A,Yang Y J. 2013. Crustal velocity structure of Central and Eastern Turkey from ambient noise tomography[J]. Geophys J Int,194(3):1941–1954.
|
Wu G X,Pan L,Wang J N,Chen X F. 2020. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of USArray transportable array[J]. J Geophys Res:Solid Earth,125:e2019JB018213.
|
Xi C Q,Xia J H,Mi B B,Dai T Y,Liu Y,Ning L. 2021. Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophys J Int,225(2):1271–1280. doi: 10.1093/gji/ggab008
|
Xia J H,Miller R D,Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics,64(3):691–700. doi: 10.1190/1.1444578
|
Xia J H,Miller R D,Park C B,Tian G. 2003. Inversion of high frequency surface waves with fundamental and higher modes[J]. J Appl Geophys,52(1):45–57. doi: 10.1016/S0926-9851(02)00239-2
|
Zhan W,Pan L,Chen X F. 2020. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise[J]. J Asian Earth Sci,196:104372. doi: 10.1016/j.jseaes.2020.104372
|
Zhou J,Chen X F. 2022. Removal of crossed artifacts from multimodal dispersion curves with modified frequency-Bessel method[J]. Bull Seismol Soc Am,112(1):143–152. doi: 10.1785/0120210012
|