Wang P,Feng X P,Zhang G H,Pan L,Chen X F. 2023. Lithospheric velocity structure of central Turkey based on ambient noise surface tomography. Acta Seismologica Sinica45(4):609−627. DOI: 10.11939/jass.20220030
Citation: Wang P,Feng X P,Zhang G H,Pan L,Chen X F. 2023. Lithospheric velocity structure of central Turkey based on ambient noise surface tomography. Acta Seismologica Sinica45(4):609−627. DOI: 10.11939/jass.20220030

Lithospheric velocity structure of central Turkey based on ambient noise surface tomography

More Information
  • Received Date: March 07, 2022
  • Revised Date: March 23, 2022
  • Available Online: August 04, 2023
  • Published Date: July 14, 2023
  • The eastern part of Turkey is the compression deformation area caused by collision, while the western part is the extension deformation area of the Aegean Sea caused by subduction. As the transition between the two, the central part of Turkey has a very complex geological situation, volcanism, long-term subduction, continental collision and other tectonic history. Therefore, obtaining the reliable velocity structure of the lithosphere in this region is very important for understanding the plate state at the end of subduction, magmatism and other phenomena. In order to better understand the lithospheric velocity structure of this area, we study this region using ambient noise tomography based on the continuous noise data of 172 stations in the area (31°E−38.8°E, 34.5°N−42.0°N). After obtaining the empirical Green’s function through the cross-correlation, the fundamental Rayleigh wave dispersion curves in the period range of 5−80 s is obtained by using the frequency-Bessel transform method, and the dispersion curve of overtones is obtained in some subarray. Subsequently, 3-D shear velocity structure from surface to 124 km is obtained by quasi-Newton iterative version based on Broyden-Fletcher-Goldfarb-Shanno correction. These results show that the lateral velocity in central Turkey changes sharply (the maximum variation can reach 400 m/s), which is closely related to the geological boundary and suture. The velocity in the Central Anatolian volcanic province (CAVP) and some Eastern Taurus mountains (ETM) is less than 4.3 km/s at 0−110 km, so we speculate that there are no lithospheric mantle in this area. The African oceanic lithosphere, which began to subduct from the Cyprus trench, subducted beneath the Central Taurus mountains (CTM) at a near vertical angle, showing obvious high-velocity characteristics. For low velocity zones related to upwelling asthenosphere materials widely exist in this area from 70 km to 100 km, the lithospheric wave velocity in most of the study areas is less than the global average shear wave velocity, and the lithosphere is thin and variable in thickness. In particular, we also find that there is an obvious low velocity zone at a depth of 13−23 km in the CTM and ETM, which may be related to the partial melting of strata caused by block fracture.
  • 李雪燕,陈晓非,杨振涛,王冰,杨博. 2020. 城市微动高阶面波在浅层勘探中的应用:以苏州河地区为例[J]. 地球物理学报,63(1):247–255.
    Li X Y,Chen X F,Yang Z T,Wang B,Yang B. 2020. Application of high-order surface waves in shallow exploration:An example of the Suzhou river,Shanghai[J]. Chinese Journal of Geophysics,63(1):247–255 (in Chinese).
    孙楠,潘磊,王伟涛,叶泵,王彬,陈晓非. 2021. 多尺度阵列嵌套组合反演宾川气枪源区横波速度结构[J]. 地球物理学报,64(11):4012–4021.
    Sun N,Pan L,Wang W T,Ye B,Wang B,Chen X F. 2021. Inversion of shear wave velocity structure beneath the Binchuan airgun source area using a nested combination of multi-scale arrays[J]. Chinese Journal of Geophysics,64(11):4012–4021 (in Chinese).
    吴华礼,陈晓非,潘磊. 2019. 基于频率-贝塞尔变换法的关东盆地S波速度成像[J]. 地球物理学报,62(9):3400–3407.
    Wu H L,Chen X F,Pan L. 2019. S-wave velocity imaging of the Kanto basin in Japan using the frequency-Bessel transformation method[J]. Chinese Journal of Geophysics,62(9):3400–3407 (in Chinese).
    Abgarmi B,Delph J R,Ozacar A A,Beck S L,Zandt G,Sandvol E,Turkelli N,Biryol C B. 2017. Structure of the crust and African slab beneath the central Anatolian plateau from receiver functions:New insights on isostatic compensation and slab dynamics[J]. Geosphere,13(6):1774–1787. doi: 10.1130/GES01509.1
    Adiyaman Ö,Chorowicz J,Arnaud O N,Gündogdu M N,Gourgaud A. 2001. Late Cenozoic tectonics and volcanism along the North Anatolian fault:New structural and geochemical data[J]. Tectonophysics,338(2):135–165. doi: 10.1016/S0040-1951(01)00131-7
    Al-Lazki A I,Seber D,Sandvol E,Turkelli N,Mohamad R,Barazangi M. 2003. Tomographic Pn velocity and anisotropy structure beneath the Anatolian Plateau (eastern Turkey) and the surrounding regions[J]. Geophys Res Lett,30(24):8043.
    Al-Lazki A I,Sandvol E,Seber D,Barazangi M,Turkelli N,Mohamad R. 2004. Pn tomographic imaging of mantle lid velocity and anisotropy at the junction of the Arabian,Eurasian and African plates[J]. Geophys J Int,158(3):1024–1040. doi: 10.1111/j.1365-246X.2004.02355.x
    Ates A,Kearey P,Tufan S. 1999. New gravity and magnetic anomaly maps of Turkey[J]. Geophys J Int,136(2):499–502. doi: 10.1046/j.1365-246X.1999.00732.x
    Bakırcı T,Yoshizawa K,Özer M F. 2012. Three-dimensional S-wave structure of the upper mantle beneath Turkey from surface wave tomography[J]. Geophys J Int,190(2):1058–1076. doi: 10.1111/j.1365-246X.2012.05526.x
    Bartol J,Govers R. 2014. A single cause for uplift of the Central and Eastern Anatolian plateau?[J]. Tectonophysics,637:116–136. doi: 10.1016/j.tecto.2014.10.002
    Bensen G D,Ritzwoller M H,Barmin M P,Levshin A L,Lin F,Moschetti M P,Shapiro N M,Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169(3):1239–1260. doi: 10.1111/j.1365-246X.2007.03374.x
    Biryol C B, Beck S L, Zandt G, Özacar A A. 2011. Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography[J]. Geophys J Int,184(3):1037–1057. doi: 10.1111/j.1365-246X.2010.04910.x
    Bozkurt E. 2001. Neotectonics of Turkey:A synthesis[J]. Geodinam Acta,14(1/2/3):3–30. doi: 10.1080/09853111.2001.11432432
    Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth’s crust[J]. Bull Seismol Soc Am,95(6):2081–2092. doi: 10.1785/0120050077
    Cosentino D,Schildgen T F,Cipollari P,Faranda C,Gliozzi E,Hudáčková N,Lucifora S,Strecker M R. 2012. Late Miocene surface uplift of the southern margin of the central Anatolian Plateau,central Taurides,Turkey[J]. Geolog Soc Am Bull,124(1/2):133–145. doi: 10.1130/B30466.1
    Delph J R,Biryol C B,Beck S L,Zandt G,Ward K M. 2015. Shear wave velocity structure of the Anatolian Plate:Anomalously slow crust in southwestern Turkey[J]. Geophys J Int,202(1):261–276. doi: 10.1093/gji/ggv141
    Delph J R,Abgarmi B,Ward K M,Beck S L,Özacar A A,Zandt G,Sandvol E,Türkelli N,Kalafat D. 2017. The effects of subduction termination on the continental lithosphere:Linking volcanism,deformation,surface uplift and slab tearing in central Anatolia[J]. Geosphere,13(6):1788–1805. doi: 10.1130/GES01478.1
    Fichtner A,Saygin E,Taymaz T,Cupillard P,Capdeville Y,Trampert J. 2013. The deep structure of the North Anatolian fault zone[J]. Earth Planet Sci Lett,373:109–117. doi: 10.1016/j.jpgl.2013.04.027
    Fichtner A, Rickers F, Cubuk-Sabuncu Y, Blom N, Gokhberg A. 2019. European part of the Collaborative seismic Earth model (version 2019.12. 01)[EB/OL]. [2021-12-08]. https://ds.iris.edu/spud/earthmodel/180227090.
    Gans C R,Beck S L,Zandt G,Biryol C B,Ozacar A A. 2009. Detecting the limit of slab break-off in central Turkey:New high-resolution Pn tomography results[J]. Geophys J Int,179(3):1566–1572. doi: 10.1111/j.1365-246X.2009.04389.x
    Govers R,Fichtner A. 2016. Signature of slab fragmentation beneath Anatolia from full-waveform tomography[J]. Earth Planet Sci Lett,450:10–19. doi: 10.1016/j.jpgl.2016.06.014
    Kaviani A,Paul A,Moradi A,Mai P M,Pilia S,Boschi L,Rümpker G,Lu Y,Tang Z,Sandvol E. 2020. Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography[J]. Geophys J Int,221(2):1349–1365. doi: 10.1093/gji/ggaa075
    Kounoudis R,Bastow I D,Ogden C S,Goes S,Jenkins J,Grant B,Braham C. 2020. Seismic tomographic imaging of the Eastern Mediterranean mantle:Implications for terminal‐stage subduction,the uplift of Anatolia and the development of the North Anatolian fault[J]. Geochem Geophys Geosyst,21(7):e2020GC009009.
    Legendre C P,Zhao L,Tseng T L. 2021. Large-scale variation in seismic anisotropy in the crust and upper mantle beneath Anatolia,Turkey[J]. Commun Earth Environ,2:73. doi: 10.1038/s43247-021-00142-6
    Li Z B,Zhou J,Wu G X,Wang J N,Zhang G H,Dong S,Pan L,Yang Z T,Gao L N,Ma Q B,Ren H X,Chen X F. 2021. CC‐FJpy:A python package for extracting overtone surface‐wave dispersion from seismic ambient‐noise cross correlation[J]. Seismol Res Lett,92(5):3179–3186. doi: 10.1785/0220210042
    Medved I,Polat G,Koulakov I. 2021. Crustal structure of the eastern Anatolia region (Turkey) based on seismic tomography[J]. Geosciences,11(2):91. doi: 10.3390/geosciences11020091
    Pan L,Chen X F,Wang J N,Yang Z T,Zhang D Z. 2019. Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes[J]. Geophys J Int,216(2):1276–1303. doi: 10.1093/gji/ggy479
    Portner D E,Delph J R,Biryol C B,Beck S L,Zandt G,Özacar A A,Sandvol E,Türkelli N. 2018. Subduction termination through progressive slab deformation across eastern Mediterranean subduction zones from updated P-wave tomography beneath Anatolia[J]. Geosphere,14(3):907–925. doi: 10.1130/GES01617.1
    Rojay B,Heimann A,Toprak V. 2001. Neotectonic and volcanic characteristics of the Karasu fault zone (Anatolia,Turkey):The transition zone between the Dead Sea transform and the East Anatolian fault zone[J]. Geodinam Acta,14(1/2/3):197–212.
    Sánchez-Sesma F J,Campillo M. 2006. Retrieval of the Green’s function from cross correlation:The canonical elastic problem[J]. Bull Seismol Soc Am,96(3):1182–1191. doi: 10.1785/0120050181
    Schleiffarth W K,Darin M H,Reid M R,Umhoefer P J. 2018. Dynamics of episodic Late Cretaceous-Cenozoic magmatism across Central to Eastern Anatolia:New insights from an extensive geochronology compilation[J]. Geosphere,14(5):1990–2008. doi: 10.1130/GES01647.1
    Schultz C A,Myers S C,Hipp J,Young C J. 1998. Nonstationary Bayesian Kriging:A predictive technique to generate spatial corrections for seismic detection location and identification[J]. Bull Seismol SocAm,88(5):1275–1288. doi: 10.1785/BSSA0880051275
    Şengör A M C,Yilmaz Y. 1981. Tethyan evolution of Turkey:A plate tectonic approach[J]. Tectonophysics,75(3/4):181–190.
    Şengör A M C,Tüysüz O,Imren C,İmren C,Sakınç M,Eyidoğan H,Görür N,Le Pichon X,Rangin C. 2005. The North Anatolian fault:A new look[J]. Annu Rev Earth Planet Sci,33(1):37–112. doi: 10.1146/annurev.earth.32.101802.120415
    Shen W S,Ritzwoller M H,Schulte-Pelkum V,Lin F C. 2013. Joint inversion of surface wave dispersion and receiver functions:A Bayesian Monte-Carlo approach[J]. Geophys J Int,192(2):807–836. doi: 10.1093/gji/ggs050
    Uslular G,Corvec N L,Mazzarini F,Legrand D,Gençalioğlu-Kuşcua G. 2021. Morphological and multivariate statistical analysis of Quaternary monogenetic vents in the Central Anatolian Volcanic Province (Turkey):Implications for the volcano-tectonic evolution[J]. J Volcan Geotherm Res,416:107280. doi: 10.1016/j.jvolgeores.2021.107280
    van Hunen J,Allen M B. 2011. Continental collision and slab break-off:A comparison of 3-D numerical models with observations[J]. Earth Planet Sci Lett,302(1/2):27–37. doi: 10.1016/j.jpgl.2010.11.035
    Wang J N,Wu G X,Chen X F. 2019. Frequency-Bessel transform method for effective imaging of higher-mode Rayleigh dispersion curves from ambient seismic noise data[J]. J Geophys Res:Solid Earth,124(4):3708–3723. doi: 10.1029/2018JB016595
    Warren L M,Beck S L,Biryol C B,Zandt G,Özacar A A,Yang Y J. 2013. Crustal velocity structure of Central and Eastern Turkey from ambient noise tomography[J]. Geophys J Int,194(3):1941–1954.
    Wu G X,Pan L,Wang J N,Chen X F. 2020. Shear velocity inversion using multimodal dispersion curves from ambient seismic noise data of USArray transportable array[J]. J Geophys Res:Solid Earth,125:e2019JB018213.
    Xi C Q,Xia J H,Mi B B,Dai T Y,Liu Y,Ning L. 2021. Modified frequency-Bessel transform method for dispersion imaging of Rayleigh waves from ambient seismic noise[J]. Geophys J Int,225(2):1271–1280. doi: 10.1093/gji/ggab008
    Xia J H,Miller R D,Park C B. 1999. Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves[J]. Geophysics,64(3):691–700. doi: 10.1190/1.1444578
    Xia J H,Miller R D,Park C B,Tian G. 2003. Inversion of high frequency surface waves with fundamental and higher modes[J]. J Appl Geophys,52(1):45–57. doi: 10.1016/S0926-9851(02)00239-2
    Zhan W,Pan L,Chen X F. 2020. A widespread mid-crustal low-velocity layer beneath Northeast China revealed by the multimodal inversion of Rayleigh waves from ambient seismic noise[J]. J Asian Earth Sci,196:104372. doi: 10.1016/j.jseaes.2020.104372
    Zhou J,Chen X F. 2022. Removal of crossed artifacts from multimodal dispersion curves with modified frequency-Bessel method[J]. Bull Seismol Soc Am,112(1):143–152. doi: 10.1785/0120210012

Catalog

    Article views (290) PDF downloads (80) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return