Citation: | Dai D Q,Yang Z G,Sun L. 2023. Rupture process of the MS6.9 Menyuan,Qinghai, earthquake on January 8,2022. Acta Seismologica Sinica,45(5):814−822. DOI: 10.11939/jass.20220032 |
Based on the waveform data observed by the near field strong-motion stations, the earthquake rupture process can be quickly and stably inverted. This paper collected waveform data recorded by the strong-motion stations constructed recently and reconstructed in Qinghai during the implementation of the National Seismic Intensity Rapid Report and Early Warning Project. Based on these data, we performed the inversion for the rupture process of the MS6.9 Menyuan, Qinghai, earthquake on January 8, 2022 by the iterative deconvolution and stacking (IDS) method. The rupture model from inversion shows that the rupture extends from the initial rupture point towards the ESE direction, with a duration of about 14 seconds (mainly focus on 2−8 seconds), a maximum slip of 3.6 m, and a rupture length of about 20 km. The rupture extends longitudinally from the deep to the shallow, which is consistent with the surface rupture found in the field investigation. The spatial distribution of aftershock sequences shows significant segmentation characteristics, indicating complex tectonic transitions in the rupture zone.
陈培善,刘家森. 1975. 用位错模型研究震级与烈度的关系[J]. 地球物理学报,18(3):183–195.
|
Chen P S,Liu J S. 1975. A study of the relation between seismic magnitude and intensity by using the dislocation model[J]. Acta Geophysica Sinica,18(3):183–195 (in Chinese).
|
郭增建, 吴瑾冰. 2000. 海原大震的历史意义及大震减灾对策的讨论: 纪念海原地震80周年[J]. 国际地震动态(12): 1–4.
|
Guo Z J,Wu J B. 2000. Historical significance of the great Haiyuan earthquake and discussion on measures for disaster reduction of great earthquakes:The eightieth anniversary of Haiyuan earthquake[J]. Recent Developments in World Seismology,(12):1–4 (in Chinese).
|
胡朝忠,杨攀新,李智敏,黄帅堂,赵妍,陈丹,熊仁伟,陈庆宇. 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报,59(5):1637–1646. doi: 10.6038/cjg20160509
|
Hu C Z,Yang P X,Li Z M,Huang S T,Zhao Y,Chen D,Xiong R W,Chen Q Y. 2016. Seismogenic mechanism of the 21 January 2016 Menyuan,Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics,59(5):1637–1646 (in Chinese).
|
杨志高, 徐泰然, 梁建宏, 邓文泽, 张建勇, 徐佳静. 2022. 中国地震台网中心大震震源机制CMT产品[EB/OL]. [2022-01-15]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_dzzyjz. doi: 10.12080/nedc.11.ds.2022.0005
|
Yang Z G, Xu T R, Liang J H, Deng W Z, Zhang J Y, Xu J J. 2022. China Earthquake Networks Center focal mechanism solution product of strong earthquakes[EB/OL]. [2022-01-15]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_dzzyjz. doi: 10.12080/nedc.11.ds.2022.0005 (in Chinese).
|
郑绪君,张勇,汪荣江. 2017. 采用IDS方法反演强震数据确定2017年8月8日九寨沟地震的破裂过程[J]. 地球物理学报,60(11):4421–4430. doi: 10.6038/cjg20171128
|
Zheng X J,Zhang Y,Wang R J. 2017. Estimating the rupture process of the 8 August 2017 Jiuzhaigou earthquake by inverting strong-motion data with IDS method[J]. Chinese Journal of Geophysics,60(11):4421–4430 (in Chinese).
|
赵凌强,孙翔宇,詹艳,杨海波,王庆良,郝明,刘雪华. 2022. 2022年1月8日青海门源MS6.9地震孕震环境和冷龙岭断裂分段延展特征[J]. 地球物理学报,65(4):1536–1546. doi: 10.6038/cjg2022Q0051
|
Zhao L Q,Sun X Y,Zhan Y,Yang H B,Wang Q L,Hao M,Liu X H. 2022. The seismogenic model of the Menyuan MS6.9 earthquake on January 8,2022,Qinghai Province and segmented extensional characteristics of the Lenglongling fault[J]. Chinese Journal of Geophysics,65(4):1536–1546 (in Chinese).
|
中国地震局. 2022. 中国地震局发布青海门源6.9级地震烈度图[EB/OL]. [2022-01-12]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html.
|
China Earthquake Administration. 2022. China Earthquake Administration released the intensity map of MS6.9 earthquake in Menyuan, Qinghai[EB/OL]. [2022-01-12]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html (in Chinese).
|
中国地震台网中心. 2022. 青海海北州门源县6.9级地震[EB/OL]. [2022-01-10]. https://news.ceic.ac.cn/CC20220108014528.html.
|
China Earthquake Networks Center. 2022. MS6.9 Menyuan earthquake in Haibei Prefecture, Qinghai Province[EB/OL]. [2022-01-10]. https://news.ceic.ac.cn/CC20220108014528.html (in Chinese).
|
邹谨敞, 邵顺妹, 蒋荣发. 1994. 古浪地震滑坡的分布规律和构造意义[J]. 中国地震, (2): 168–174.
|
Zou J C,Shao S M,Jiang R F. 1994. Distribution and tectonic implications on the Gulang seismic landslide[J]. Earthquake Research in China,(2):168–174 (in Chinese).
|
Beroza G C. 1991. Near-source modeling of the Loma Prieta earthquake:Evidence for heterogeneous slip and implications for earthquake hazard[J]. Bull Seismol Soc Am,81(5):1603–1621. doi: 10.1785/bssa0810051603
|
Chousianitis K,Konca A O. 2021. Rupture process of the 2020 MW7.0 Samos earthquake and its effect on surrounding active faults[J]. Geophys Res Lett,48(14):e2021GL094162. doi: 10.1029/2021GL09416
|
Das S,Henry C. 2003. Spatial relation between main earthquake slip and its aftershock distribution[J]. Rev Geophys,41(3):1013. doi: 10.1029/2021GL094162
|
Deng Y F,Shen W S,Xu T,Ritzwoller M H. 2015. Crustal layering in northeastern Tibet:A case study based on joint inversion of receiver functions and surface wave dispersion[J]. Geophys J Int,203(1):692–706. doi: 10.1093/gji/ggv321
|
Duputel Z,Rivera L,Kanamori H,Hayes G. 2012. W phase source inversion for moderate to large earthquakes (1990−2010)[J]. Geophys J Int,189(2):1125–1147. doi: 10.1111/j.1365-246X.2012.05419.x
|
Kanamori H,Rivera L. 2008. Source inversion of W phase:Speeding up seismic tsunami warning[J]. Geophys J Int,175(1):222–238. doi: 10.1111/j.1365-246X.2008.03887.x
|
Laske G,Masters G,Ma Z T,Pasyanos M. 2012. CRUST1.0:An updated global model of Earth’s crust[J]. Geophys Res Abs,14:3743.
|
Li Y S,Jiang W L,Li Y J,Shen W H,He Z T,Li B Q,Li Q,Jiao Q S,Tian Y F. 2022. Coseismic rupture model and tectonic implications of the January 7 2022,Menyuan MW6.6 earthquake:Constraints from InSAR observations and field investigation[J]. Remote Sens,14(9):2111. doi: 10.3390/rs14092111
|
Liu M,Li H Y,Peng Z G,Ouyang L B,Ma Y H,Ma J X,Liang Z J,Huang Y F. 2019. Spatial-temporal distribution of early aftershocks following the 2016 MS6.4 Menyuan,Qinghai,China earthquake[J]. Tectonophysics,766:469–479.
|
Pan S Z,Niu F L. 2011. Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan Plateau from receiver function analysis[J]. Earth Planet Sci Lett,303(3/4):291–298. doi: 10.1016/j.jpgl.2011.01.007
|
USGS. 2022. M6.6: Northern Qinghai, China[EB/OL]. [2022-01-07]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000g9zq/finite-fault.
|
Wang Q,Niu F L,Gao Y,Chen Y T. 2016. Crustal structure and deformation beneath the NE margin of the Tibetan Plateau constrained by teleseismic receiver function data[J]. Geophys J Int,204(1):167–179. doi: 10.1093/gji/ggv420
|
Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green’s functions[J]. Bull Seismol Soc Am,89(3):733–741. doi: 10.1785/bssa0890030733
|
Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002. doi: 10.1785/BSSA0840040974
|
Yang H F, Wang D, Guo R M, Xie M Y, Zang Y, Wang Y, Yao Q, Cheng C, An Y R, Zhang Y Y. 2022. Rapid report of the 8 January 2022 MS6.9 Menyuan earthquake, Qinghai, China[J]. Earthquake Research Advances, 2(1), doi: 10.1016/j.eqrea.2022.100113.
|
Zhang Y,Wang R J,Zschau J,Chen Y T,Parolai S,Dahm T. 2014. Automatic imaging of earthquake rupture processes by iterative deconvolution and stacking of high rate GPS and strong motion seismograms[J]. J Geophys Res:Solid Earth,119(7):5633–5650. doi: 10.1002/2013JB010469
|
Zhang Y,Wang R J,Chen Y T. 2015. Stability of rapid finite-fault inversion for the 2014 MW6.1 South Napa earthquake[J]. Geophys Res Lett,42(23):10263–10272. doi: 10.1002/2015gl066244
|
Zheng G,Wang H,Wright T J,Lou Y D,Zhang R,Zhang W X,Shi C,Huang J F,Wei N. 2017. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. J Geophys Res:Solid Earth,122(11):9290–9312. doi: 10.1002/2017jb014465
|
Zheng X J,Zhang Y,Wang R J,Zhao L,Li W Y,Huang Q H. 2020. Automatic inversions of strong-motion records for finite-fault models of significant earthquakes in and around Japan[J]. J Geophys Res:Solid Earth,125(9):e2020JB019992. doi: 10.1029/2020jb019992
|