Su R H,Yuan D Y,Xie H,Wen Y M,Si G J,Xue S Y. 2023. Classified surface rupture characteristics and damage analysis of the 2022 MS6.9 Menyuan earthquake,Qinghai. Acta Seismologica Sinica45(5):797−813. DOI: 10.11939/jass.20220075
Citation: Su R H,Yuan D Y,Xie H,Wen Y M,Si G J,Xue S Y. 2023. Classified surface rupture characteristics and damage analysis of the 2022 MS6.9 Menyuan earthquake,Qinghai. Acta Seismologica Sinica45(5):797−813. DOI: 10.11939/jass.20220075

Classified surface rupture characteristics and damage analysis of the 2022 MS6.9 Menyuan earthquake,Qinghai

More Information
  • Received Date: May 18, 2022
  • Revised Date: December 05, 2022
  • Available Online: August 23, 2023
  • At 01:45 on January 8, 2022, a MS6.9 earthquake occurred in Menyuan County, Haibei Tibetan Autonomous Prefecture, Qinghai Province. The epicenter was located at (37.77°N, 101.26°E) in Lenglongling area of the central Qilian mountains, with a focal depth of 10 km. According to the comprehensive results of field investigation and aerial image interpretation by unmanned aerial vehicle (UAV), the seismogenic fault of this earthquake undertakes a sinistral strike-slip motion, with a slight thrust component. The surface rupture zone of this earthquake is composed of the north main rupture zone located at the west end of Lenglongling fault and the southwest secondary traction rupture zone located at the east end of Tuolaishan fault. A series of extensional step-overs, sinistral displacements, tensional fractures, compressed bulges, and compressed ridges were formed along the surface rupture zone, resulting in damage to the Lanzhou-Ürümqi high-speed railway tunnels and bridges and the suspension of train services. In order to comprehensively analyze the different types of surface fracture features and seismic damage caused by this earthquake, field investigations and aerial interpretation using UAV were conducted along the rupture zone. As a result, typical coseismic surface fracture features along the rupture zone were categorized as follows: ① Various typical geometric structures, including echelon secondary rupture, sinistral extensional step-overs, sinistral compressed step-overs, dendritic and netlike forked rupture, etc; ② Horizontal displacement observed in various geomorphic markers, such as left-lateral dislocations in pastoral areas, truck trace, animal footprints, and gullies and gully ice; ③ Various types of vertical rupture, such as thrust seismic scarps and normal seismic scarps; ④ Various types of compressed rupture, such as compressed ridges and compressed bulges; ⑤ Different types of tensional crack zones, including pure tensional cracks and tensional-shear cracks. The geological and engineering seismic damage caused by the earthquake can be summarized as follows: ① Slope instability across the earthquake fault zone; ② Damage to highways, bridges, and tunnels across the earthquake fault zone; ③ Seismic deformation such as ice bulges and highway cracks in the areas near the earthquake fault zone. In addition, with the analysis and discussion on the distribution characteristics and formation mechanisms of the phenomena above mentioned, we should emphasize the importance of strengthening engineering anti-rupture fortification when engineering constructions cross active faults.

  • 邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学:D辑,32(12):1020–1030.
    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Basic characteristics of active tectonics of China[J]. Science in China:Series D,46(4):356–372.
    邓起东. 2007. 中国活动构造图[CM]. 北京: 地震出版社: 2.
    Deng Q D. 2007. Map of Active Tectonics in China[CM]. Beijing: Seismological Press: 2 (in Chinese).
    徐锡伟, 韩竹军, 杨晓平, 张世民, 于贵华, 周本刚, 李峰, 马保起, 陈桂华, 冉勇康. 2016. 中国及邻近地区地震构造图[CM]. 北京: 地震出版社: 1.
    Xu X W, Han Z J, Yang X P, Zhang S M, Yu G H, Zhou B G, Li F, Ma B Q, Chen G H, Ran Y K. 2016. Seismotectonic Map of China and Adjacent Areas[CM]. Beijing: Seismological Press: 1 (in Chinese).
    国家地震科学数据中心. 2022. 中国历史地震目录[DB/OL]. [2022-03-05]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_lsdz.
    National Earthquake Data Center. 2022. Catalogue of historical earthquakes in China[DB/OL]. [2022-03-05]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_lsdz (in Chinese).
    郭敬信,侯珍清,侯康明. 1990. 昌马—祁连断裂带中段全新世活动特征与古地震[J]. 西北地震学报,12(3):38–43.
    Guo J X,Hou Z Q,Hou K M. 1990. Active character and paleoearthquake on median section of Changma-Qilian fault zone in Holocene[J]. Northwestern Seismological Journal,12(3):38–43 (in Chinese).
    郭鹏,韩竹军,安艳芬,姜文亮,毛泽斌,冯蔚. 2017. 冷龙岭断裂系活动性与2016年门源6.4级地震构造研究[J]. 中国科学:地球科学,47(5):617–630.
    Guo P,Han Z J,An Y F,Jiang W L,Mao Z B,Feng W. 2017. Activity of the Lenglongling fault system and seismotectonics of the 2016 MS6.4 Menyuan earthquake[J]. Science China Earth Sciences,60(5):929–942. doi: 10.1007/s11430-016-9007-2
    郭增建,谢原定,李孟銮,秦保燕,杨兴昌. 1976. 1920年12月16日的海原大地震[J]. 地球物理学报,19(1):42–49.
    Guo Z J,Xie Y D,Li M L,Qin B Y,Yang X C. 1976. Great Haiyuan earthquake on December 16,1920[J]. Acta Geophysica Sinica,19(1):42–49 (in Chinese).
    韩帅,吴中海,高扬,卢海峰. 2022. 2022年1月8日青海门源MS6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报,28(2):155–168.
    Han S,Wu Z H,Gao Y,Lu H F. 2022. Surface rupture investigation of the 2022 Menyuan MS6.9 earthquake,Qinghai,China:Implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk[J]. Journal of Geomechanics,28(2):155–168 (in Chinese).
    何文贵,袁道阳,葛伟鹏,罗浩. 2010. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J]. 地震,30(1):131–137. doi: 10.3969/j.issn.1000-3274.2010.01.015
    He W G,Yuan D Y,Ge W P,Luo H. 2010. Determination of the slip rate of the Lenglongling fault in the middle and eastern segments of the Qilian Mountain active fault zone[J]. Earthquake,30(1):131–137 (in Chinese).
    侯康明. 1998. 1927年古浪8级大震地表破裂特征及形成机制[J]. 地震地质,20(1):20–27.
    Hou K M. 1998. Characteristics of ground ruptures caused by 1927 Gulang M8 earthquake and their causative mechanisms[J]. Seismology and Geology,20(1):20–27 (in Chinese).
    侯珍清,才树骅. 1990. 甘肃景泰—天祝6.2级地震[J]. 西北地震学报,12(4):48.
    Hou Z Q,Cai S H. 1990. The M6.2 Jingtai-Tianzhu earthquake of Gausu Province[J]. Northwestern Seismological Journal,12(4):48 (in Chinese).
    胡朝忠,杨攀新,李智敏,黄帅堂,赵妍,陈丹,熊仁伟,陈庆宇. 2016. 2016年1月21日青海门源6.4级地震的发震机制探讨[J]. 地球物理学报,59(5):1637–1646. doi: 10.6038/cjg20160509
    Hu C Z,Yang P X,Li Z M,Huang S T,Zhao Y,Chen D,Xiong R W,Chen Q Y. 2016. Seismogenic mechanism of the 21 January 2016 Menyuan,Qinghai MS6.4 earthquake[J]. Chinese Journal of Geophysics,59(5):1637–1646 (in Chinese).
    姜文亮,李永生,田云锋,韩竹军,张景发. 2017. 冷龙岭地区2016年青海门源6.4级地震发震构造特征[J]. 地震地质,39(3):536–549. doi: 10.3969/j.issn.0253-4967.2017.03.007
    Jiang W L,Li Y S,Tian Y F,Han Z J,Zhang J F. 2017. Research of seismogenic structure of the Menyuan MS6.4 earthquake on January 21,2016 in Lenglongling area of NE Tibetan Plateau[J]. Seismology and Geology,39(3):536–549 (in Chinese).
    兰州地震研究所、青海省地震局联合考察队. 1987. 1986年8月26日门源6.4级地震考察初步总结[J]. 西北地震学报,9(2):75–80.
    Joint Investigation Team of Seismological Institute of Lanzhou and Seismological Bureau of Qinghai Province. 1987. A preliminary summarization of Menyuan earthquake (M=6.4) on Aug. 26,1986[J]. Northwestern Seismological Journal,9(2):75–80 (in Chinese).
    李强,江在森,武艳强,赵静,魏文薪,刘晓霞. 2013. 海原—六盘山断裂带现今构造变形特征[J]. 大地测量与地球动力学,33(2):18–22.
    Li Q,Jiang Z S,Wu Y Q,Zhao J,Wei W X,Liu X X. 2013. Present-day tectonic deformation characteristics of Haiyuan-Liupanshan fault zone[J]. Journal of Geodesy and Geodynamics,33(2):18–22 (in Chinese).
    李智敏,盖海龙,李鑫,袁道阳,谢虹,姜文亮,李永生,苏琦. 2022. 2022年青海门源MS6.9级地震发震构造和地表破裂初步调查[J]. 地质学报,96(1):330–335.
    Li Z M,Gai H L,Li X,Yuan D Y,Xie H,Jiang W L,Li Y S,Su Q. 2022. Seismogenic fault and coseismic surface deformation of the Menyuan MS6.9 earthquake in Qinghai,China[J]. Acta Geologica Sinica,96(1):330–335 (in Chinese).
    刘建生, 刘百篪, 袁道阳. 1994. 肃南断裂晚第四纪活动特征及古地震初步研究[G]//中国活动断层研究. 北京: 地震出版社: 36–41.
    Liu J S, Liu B C, Yuan D Y. 1994. Preliminary study on Late Quaternary movement and paleoseismicity along the Sunan fault[G]//Research on Active Faults in China. Beijing: Seismological Press: 36–41 (in Chinese).
    潘家伟,李海兵,Chevalier M L,刘栋梁,李超,刘富财,吴琼,卢海建,焦利青. 2022. 2022年青海门源MS6.9地震地表破裂带及发震构造研究[J]. 地质学报,96(1):215–231. doi: 10.3969/j.issn.0001-5717.2022.01.018
    Pan J W,Li H B,Chevalier M L,Liu D L,Li C,Liu F C,Wu Q,Lu H J,Jiao L Q. 2022. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake,Qinghai Province,China[J]. Acta Geologica Sinica,96(1):215–231 (in Chinese).
    徐纪人,姚立珣,汪进. 1986. 1986年8月26日门源6.4级地震及其强余震的震源机制解[J]. 西北地震学报,8(4):82–84.
    Xu J R,Yao L X,Wang J. 1986. Earthquake source mechanisms of Menyuan earthquake (MS=6.4,on Aug. 26,1986) and its strong aftershocks[J]. Northwestern Seismological Journal,8(4):82–84 (in Chinese).
    薛善余,谢虹,袁道阳,李智敏,苏瑞欢,文亚猛. 2022. 2022门源MS6.9地震地表破裂带震害特征调查[J]. 地震工程学报,44(2):458–467.
    Xue S Y,Xie H,Yuan D Y,Li Z M,Su R H,Wen Y M. 2022. Seismic disaster characteristics of the surface rupture ofMenyuan MS6.9 earthquake in 2022[J]. China Earthquake Engineering Journal,44(2):458–467 (in Chinese).
    袁道阳,刘百篪,吕太乙,何文贵,刘小凤,甘卫军. 1998. 北祁连山东段活动断裂带的分段性研究[J]. 西北地震学报,20(4):27–34.
    Yuan D Y,Liu B C,Lü T Y,He W G,Liu X F,Gan W J. 1998. Study on the segmentation in east segment of the northern Qilianshan fault zone[J]. Northwestern Seismological Journal,20(4):27–34 (in Chinese).
    袁道阳,张培震,刘百篪,甘卫军,毛凤英,王志才,郑文俊,郭华. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报,78(2):270–278. doi: 10.3321/j.issn:0001-5717.2004.02.017
    Yuan D Y,Zhang P Z,Liu B C,Gan W J,Mao F Y,Wang Z C,Zheng W J,Guo H. 2004. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica,78(2):270–278 (in Chinese).
    袁道阳,谢虹,苏瑞欢,李智敏,文亚猛,司国军,薛善余,陈干,刘炳旭,梁淑敏,彭慧,段磊,魏拾其. 2023. 2022年1月8日青海门源MS6.9地震地表破裂带特征与发震机制[J]. 地球物理学报,66(1):229–244. doi: 10.6038/cjg2022Q0093
    Yuan D Y,Xie H,Su R H,Li Z M,Wen Y M,Si G J,Xue S Y,Chen G,Liu B X,Liang S M,Peng H,Duan L,Wei S Q. 2023. Characteristics of co-seismic surface rupture zone of Menyuan MS6.9 earthquake in Qinghai Province on January 8,2022 and seismogenic mechanism[J]. Chinese Journal of Geophysics,66(1):229–244 (in Chinese).
    张培震. 1999. 中国大陆岩石圈最新构造变动与地震灾害[J]. 第四纪研究,(5):404–413. doi: 10.3321/j.issn:1001-7410.1999.05.003
    Zhang P Z. 1999. Late Quaternary tectonic deformation and earthquake hazard in continental China[J]. Quaternary Sciences,(5):404–413 (in Chinese).
    郑文俊,袁道阳,何文贵. 2004. 祁连山东段天桥沟—黄羊川断裂古地震活动习性研究[J]. 地震地质,26(4):645–657. doi: 10.3969/j.issn.0253-4967.2004.04.011
    Zheng W J,Yuan D Y,He W G. 2004. Characteristics of palaeo-earthquake activity along the active Tianqiaogou-Huangyangchuan fault on the eastern section of the Qilianshan mountains[J]. Seismology and Geology,26(4):645–657 (in Chinese).
    郑文俊,张培震,袁道阳,郑德文. 2009. GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形[J]. 地球物理学报,52(10):2491–2508. doi: 10.3969/j.issn.0001-5733.2009.10.008
    Zheng W J,Zhang P Z,Yuan D Y,Zheng D W. 2009. Deformation on the northern of the Tibetan Plateau from GPS measurement and geologic rates of Late Quaternary along the major fault[J]. Chinese Journal of Geophysics,52(10):2491–2508 (in Chinese).
    中国地震局. 2022. 中国地震局发布青海门源6.9级地震烈度图[EB/OL]. [2022-01-11]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html.
    China Earthquake Administration. 2022. China Earthquake Administration releases intensity map of MS6.9 earthquake in Menyuan, Qinghai Province[EB/OL]. [2022-01-11]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5646200/index.html (in Chinese).
    中国地震局震害防御司. 1999. 中国近代地震目录[M]. 北京: 中国科学技术出版社: 1–637.
    Department of Earthquake Disaster Prevention, China Seismological Bureau. 1999. The Catalogue of Modern Earthquakes in China[M]. Beijing: China Science and Technology Press: 1–637 (in Chinese).
    中国地震台网中心. 2022a. 1月8日1时45分青海海北州门源县发生6.9级地震[EB/OL]. [2022-01-15]. http://www.cenc.ac.cn/cenc/dzxx/396391/index.html.
    China Earthquake Networks Center. 2022a. A MS6.9 earthquake hit Menyuan County, Haibei Prefecture, Qinghai Province at 1:45 am on January 8[EB/OL]. [2022-01-15]. http://www.cenc.ac.cn/cenc/dzxx/396391/index.html (in Chinese).
    中国地震台网中心. 2022b. 历史地震查询[DB/OL]. [2022-08-31]. http://www.ceic.ac.cn/history.
    China Earthquake Networks Center. 2022b. Historical earthquake search[DB/OL]. [2022-08-31]. http://www.ceic.ac.cn/history (in Chinese).
    周春景,吴中海,尼玛次仁,李家存,蒋瑶,刘艳辉. 2014. 青海玉树MS7.1级地震同震地表破裂构造[J]. 地质通报,33(4):551–566. doi: 10.3969/j.issn.1671-2552.2014.04.011
    Zhou C J,Wu Z H,Nima C R,Li J C,Jiang Y,Liu Y H. 2014. Structural analysis of the co-seismic surface ruptures associated with the Yushu MS7.1 earthquake,Qinghai Province[J]. Geological Bulletin of China,33(4):551–566 (in Chinese).
    Gaudemer Y,Tapponnier P,Meyer B,Peltzer G,Shunmin G,Zhitai C,Huagung D,Cifuentes I. 1995. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu gap’,on the western Haiyuan fault,Gansu (China)[J]. Geophys J Int,120(3):599–645. doi: 10.1111/j.1365-246X.1995.tb01842.x
    Hu X F,Cao X L,Li T,Mao J W,Zhang J,He X,Zhang Y N,Pan B T. 2021. Late Quaternary fault slip rate within the Qilian orogen,insight into the deformation kinematics for the NE Tibetan Plateau[J]. Tectonics,40(5):e2020TC006586.
    Lasserre C,Gaudemer Y,Tapponnier P,Mériaux A S,van der Woerd J,Yuan D Y,Ryerson F J,Finkel R C,Caffee M W. 2002. Fast Late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault,Qinghai,China[J]. J Geophys Res:Solid Earth,107(B11):2276. doi: 10.1029/2000JB000060
    Li H B,Pan J W,Lin A M,Sun Z M,Liu D L,Zhang J J,Li C L,Liu K,Chevalier M L,Yun K,Gong Z. 2016. Coseismic surface ruptures associated with the 2014 MW6.9 Yutian earthquake on the Altyn Tagh fault,Tibetan Plateau[J]. Bull Seismol Soc Am,106(2):595–608. doi: 10.1785/0120150136
    Liu J R,Ren Z K,Zhang H P,Li C Y,Zhang Z Q,Zheng W J,Li X M,Liu C C. 2022. Slip rates along the Laohushan fault and spatial variation in slip rate along the Haiyuan fault zone[J]. Tectonics,41(2):e2021TC006992.
    Ren J J,Zhang Z W,Gai H L,Kang W J. 2021. Typical Riedel shear structures of the coseismic surface rupture zone produced by the 2021 MW7.3 Maduo earthquake,Qinghai,China,and the implications for seismic hazards in the block interior[J]. Natural Hazards Research,1(4):145–152. doi: 10.1016/j.nhres.2021.10.001
    Shao Y X,Liu-Zeng J,van der Woerd J,Klinger Y,Oskin M E,Zhang J Y,Wang P,Wang P T,Wang W,Yao W Q. 2021. Late Pleistocene slip rate of the central Haiyuan fault constrained from optically stimulated luminescence,14C,and cosmogenic isotope dating and high-resolution topography[J]. GSA Bull,133(7/8):1347–1369.
    USGS. 2000. SRTMGL1 v003[DB/OL]. [2022-03-05]. https://lpdaac.usgs.gov/products/srtmgl1v003.
    USGS. 2022. M6.6: Northern Qinghai, China[EB/OL]. [2022-01-12]. https://earthquake.usgs.gov/earthquakes/eventpage/us7000g9zq/technical.
    Yuan D Y, Zhang P Z, Ge W P, Liu X, Zhang H, Liang M. 2008. Late Quaternary strike-slip features along the western segment of Haiyuan-Qilianshan fault, NE Tibetan Plateau[C]//American Geophysical Union Fall Meeting. San Francisco: AGU: T33B-2057.
    Zhang Y P,Zheng W J,Zhang D L,Zhang P Z,Yuan D Y,Tian Q Y,Zhang B X,Liang S M. 2019. Late Pleistocene left-lateralslip rates of the Gulang fault and its tectonic implications in eastern Qilian Shan (NE Tibetan Plateau),China[J]. Tectonophysics,756:97–111. doi: 10.1016/j.tecto.2019.02.013
    Zheng W J,Zhang P Z,He W G,Yuan D Y,Shao Y X,Zheng D W,Ge W P,Min W. 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau:Evidence from decadal GPS measurements and Late Quaternary slip rates on faults[J]. Tectonophysics,584:267–280. doi: 10.1016/j.tecto.2012.01.006
  • Related Articles

  • Cited by

    Periodical cited type(3)

    1. 卜风贤,杨云. 民国九年(1920)海原大地震的山水刻画与灾区修复. 中国农史. 2024(01): 107-116 .
    2. 李佳怡,徐岳仁,张军龙,母若愚. 基于多源卫星影像的同震地表破裂带迹象变化识别——以2001年昆仑山口西M_S8.1地震为例. 地震学报. 2024(06): 982-1001 . 本站查看
    3. 高云鹏,刘静,韩龙飞,邵延秀,姚文倩,徐晶,胡贵明,王子君,屈孜屹,徐恩民. 古地震事件震级或强度大小限定的讨论. 地质力学学报. 2023(05): 704-719 .

    Other cited types(1)

Catalog

    Article views (214) PDF downloads (68) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return