Wang Z Y,Hao C Y. 2023. Magnitude measurement and explosive yield estimate using the data of Hailar seismic array. Acta Seismologica Sinica45(6):1079−1090. DOI: 10.11939/jass.20220080
Citation: Wang Z Y,Hao C Y. 2023. Magnitude measurement and explosive yield estimate using the data of Hailar seismic array. Acta Seismologica Sinica45(6):1079−1090. DOI: 10.11939/jass.20220080

Magnitude measurement and explosive yield estimate using the data of Hailar seismic array

More Information
  • Received Date: May 31, 2022
  • Revised Date: June 18, 2022
  • Available Online: August 01, 2023
  • There were three explosions occurred in northest Asia on January 6, 2016, September 9, 2016, and September 3, 2017. Using the data of Hailar seismic array, the amplitudes of P-phase and Lg-phase of the three explosions were picked up, the amplitude spectrum were calculated, the magnitude were measured, and the yield were estimated. The results of amplitude picking and amplitude spectrum calculation show that the low-frequency component of Lg-phase for the 2017 event is more developed than those of the previous two, and the amplitude is relatively larger, which is inferred to be related to the explosion damage mechanism or explosion technical process. The short-period body wave magnitude mb(P) calculated by using the national standard for the three explosions are 5.3±0.1, 5.6±0.1 and 6.1±0.1, respectively. The short-period body wave magnitude mb(Lg) calculated by using the third peak method of Lg-phase for the three explosions are 4.33±0.05, 4.56±0.4和5.60±0.03, respectively. The average yield results obtained by mb(P) and mb(Lg) through the magnitude-yield empirical formula were taken as the yield results of the three events, which were (14.4±4.3), (34±11.6) and (190.4±45.4) kt, respectively. The energy of the explosion event in 2017 was 5.6 times as much as that of the event in September 2016 and 13.2 times that of the event in January 2016.

  • 边银菊,黄汉明,郭永霞. 2010. 明灯一号及邻近地区地震与爆炸的识别[J]. 地震地磁观测与研究,31(5):49–55. doi: 10.3969/j.issn.1003-3246.2010.05.009
    Bian Y J,Huang H M,Guo Y X. 2010. Identification of earthquakes and explosions in Bright Lamp No.1 and its nearby area[J]. Seismological and Geomagnetic Observation and Research,31(5):49–55 (in Chinese).
    郝春月,李丽,郑重. 2017. 基于PS12台阵的微弱爆炸信号识别技术[J]. 爆炸与冲击,37(5):822–828.
    Hao C Y,Li L,Zheng Z. 2017. Recognition technology for weak explosion signals based on PS12 borehole seismic array[J]. Explosion and Shock Waves,37(5):822–828 (in Chinese).
    林鑫,姚振兴. 2016. 利用区域地震波形振幅包络约束朝鲜地下核试验的埋深和当量[J]. 地球物理学报,59(6):2066–2079.
    Lin X,Yao Z X. 2016. Yield and burial depth of the North Korean underground nuclear tests constrained by amplitude envelopes of regional seismic waveforms[J]. Chinese Journal of Geophysics,59(6):2066–2079 (in Chinese).
    刘杰,郑斯华,康英,啜永清. 2004. 利用P波和S波的初动和振幅比计算中小地震的震源机制解[J]. 地震,24(1):19–26. doi: 10.3969/j.issn.1000-3274.2004.01.003
    Liu J,Zheng S H,Kang Y,Chuo Y Q. 2004. The focal mechanism determinations of moderate-small earthquakes using the first motion and amplitude ratio of P and S wave[J]. Earthquake,24(1):19–26 (in Chinese).
    刘森. 2020. 地震Lg波衰减测量方法及其在中国东北和云南地区的应用研究[D]. 北京: 中国地震局地球物理研究所: 25−31.
    Liu S. 2020. Seismic Lg Wave Attenuation Measurement Method and Its Application in Northeast China and Yunnan[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 25–31 (in Chinese).
    谢小碧,赵连锋. 2018. 朝鲜地下核试验的地震学观测[J]. 地球物理学报,61(3):889–904. doi: 10.6038/cjg2018L0677
    Xie X B,Zhao L F. 2018. The seismic characterization of North Korea underground nuclear tests[J]. Chinese Journal of Geophysics,61(3):889–904 (in Chinese).
    张天中,马云生,黄蓉良. 1998. 尾波振幅比的物理意义及其可能应用[J]. 地震学报,20(4):381–387. doi: 10.3321/j.issn:0253-3782.1998.04.006
    Zhang T Z,Ma Y S,Huang R L. 1998. Physical significance of coda amplitude ratio and its possible application[J]. Acta Seismologica Sinica,20(4):381–387 (in Chinese).
    赵连锋,谢小碧,何熹,赵旭,姚振兴. 2017. 2017年9月3日朝鲜地下核试验的地震学鉴别和当量估计[J]. 科学通报,62(35):4163–4168.
    Zhao L F,Xie X B,He X,Zhao X,Yao Z X. 2017. Seismological discrimination and yield estimation of the 3 September 2017 Democratic People’s Republic of Korea (DPRK) underground nuclear test[J]. Chinese Science Bulletin,62(35):4163–4168 (in Chinese). doi: 10.1360/N972017-00979
    中国地震局. 2017. GB 17740—2017 地震震级的规定[S]. 北京: 中国标准出版社: 4.
    China Earthquake Administration. 2017. GB 17740−2017 General Ruler for Earthquake Magnitude[S]. Beijing: Standards Press of China: 4 (in Chinese).
    Bouchon M. 1982. The complete synthesis of seismic crustal phases at regional distances[J]. J Geophys Res:Solid Earth,87(B3):1735–1741. doi: 10.1029/JB087iB03p01735
    Bowers D,Marshall P D,Douglas A. 2001. The level of deterrence provided by data from the SPITS seismometer array to possible violations of the Comprehensive Test Ban in the Novaya Zemlya region[J]. Geophys J Int,146(2):425–438. doi: 10.1046/j.1365-246x.2001.01462.x
    Chaves E J,Lay T,Voytan D P. 2018. Yield estimate (230 kt) for a Mueller-Murphy Model of the 3 September 2017,North Korean nuclear test (mbNEIC=6.3) from teleseismic broadband P waves assuming extensive near-source damage[J]. Geophys Res Lett,45(19):10314–10322.
    Coblentz D,Pabian F. 2015. Revised geologic site characterization of the North Korean test site at Punggye-ri[J]. Sci Glob Secur,23(2):101–120. doi: 10.1080/08929882.2015.1039343
    Gaebler P,Ceranna L,Nooshiri N,Barth A,Cesca S,Frei M,Grünberg I,Hartmann G,Koch K,Pilger C,Ross J O,Dahm T. 2019. A multi-technology analysis of the 2017 North Korean nuclear test[J]. Solid Earth,10(1):59–78. doi: 10.5194/se-10-59-2019
    Gutenberg B. 1945a. Amplitudes of P,PP,and S and magnitude of shallow earthquakes[J]. Bull Seismol Soc Am,35(2):57–69. doi: 10.1785/BSSA0350020057
    Gutenberg B. 1945b. Magnitude determination for deep-focus earthquakes[J]. Bull Seismol Soc Am,35(3):117–130. doi: 10.1785/BSSA0350030117
    He X,Zhao L F,Xie X B,Yao Z X. 2018. High-precision relocation and event discrimination for the 3 September 2017 underground nuclear explosion and subsequent seismic events at the North Korean test site[J]. Seismol Res Lett,89(6):2042–2048.
    Kennett B L N,Mykkeltveit S. 1984. Guided wave propagation in laterally varying media Ⅱ :Lg-waves in north-western Europe[J]. Geophys J Int,79(1):257–267. doi: 10.1111/j.1365-246X.1984.tb02854.x
    Kim S G,Gitterman Y,Lee S K. 2019. Depth calculation for the January 6,2016,the September 9,2016 and the September 3,2017 nuclear tests of North Korea from detailed depth phases using regional and teleseismic arrays[J]. Pure Appl Geophys,176(1):133–146. doi: 10.1007/s00024-018-1958-y
    Knopoff L,Schwab F,Kauselt E. 1973. Interpretation of Lg[J]. Geophys J Int,33(4):389–404. doi: 10.1111/j.1365-246X.1973.tb02375.x
    Murphy J R. 1996. Types of seismic events and their source descriptions[G]//Monitoring a Comprehensive Test Ban Treaty. Dordrecht: Springer: 225–245.
    Murphy J R,Stevens J L,Kohl B C,Bennett T J. 2013. Advanced seismic analyses of the source characteristics of the 2006 and 2009 North Korean nuclear tests[J]. Bull Seismol Soc Am,103(3):1640–1661. doi: 10.1785/0120120194
    Myers S C,Ford S R,Mellors R J,Baker S,Ichinose G. 2018. Absolute locations of the North Korean nuclear tests based on differential seismic arrival times and InSAR[J]. Seismol Res Lett,89(6):2049–2058. doi: 10.1785/0220180123
    NORSAR. 2017. Kraftig prøvesprengning i Nord-Korea 3. September 2017[EB/OL]. [2023-11-08]. https://www.jordskjelv.no/meldinger/kraftig-provesprengning-i-nord-korea-3-september-2017-article1543-851.html
    Nuttli O W. 1973. Seismic wave attenuation and magnitude relations for eastern North America[J]. J Geophys Res,78(5):876–885. doi: 10.1029/JB078i005p00876
    Nuttli O W. 1986a. Yield estimates of Nevada Test Site explosions obtained from seismic Lg waves[J]. J Geophys Res:Solid Earth,91(B2):2137–2151. doi: 10.1029/JB091iB02p02137
    Nuttli O W. 1986b. Lg magnitudes of selected East Kazakhstan underground explosions[J]. Bull Seismol Soc Am,76(5):1241–1251. doi: 10.1785/BSSA0760051241
    Pasyanos M E,Myers S C. 2018. The coupled location/depth/yield problem for North Korea’s declared nuclear tests[J]. Seismol Res Lett,89(6):2059–2067. doi: 10.1785/0220180109
    Patton H J,Schlittenhardt J. 2005. A transportable mb(Lg) scale for central Europe and implications for low-magnitude MS-mb discrimination[J]. Geophys J Int,163(1):126–140. doi: 10.1111/j.1365-246X.2005.02663.x
    Press F,Ewing M. 1952. Two slow surface waves across North America[J]. Bull Seismol Soc Am,42(3):219–228. doi: 10.1785/BSSA0420030219
    USGS. 2017. M6.3 nuclear explosion: 21 km ENE of S?ngjibaegam, North Korea[EB/OL]. [2023-11-08]. https://earthquake.usgs.gov/earthquakes/eventpage/us2000aert/executive.
    Voytan D P,Lay T,Chaves E J,Ohman J T. 2019. Yield estimates for the six North Korean nuclear tests from teleseismic P wave modeling and intercorrelation of P and Pn recordings[J]. J Geophys Res:Solid Earth,124(5):4916–4939. doi: 10.1029/2019JB017418
    Wang D,Hutko A R. 2018. Relative relocations of the North Korean Nuclear Tests from 2006 to 2017 using the Hi-Net array in Japan[J]. Geophys Res Lett,45(15):7481–7487.
    Wei M. 2017. Location and source characteristics of the 2016 January 6 North Korean nuclear test constrained by InSAR[J]. Geophys J Int,209(2):762–769. doi: 10.1093/gji/ggx053
    Xie J,Mitchell B J. 1990. Attenuation of multiphase surface waves in the Basin and Range Province,part I:Lg and Lg coda[J]. Geophys J Int,102(1):121–137. doi: 10.1111/j.1365-246X.1990.tb00535.x
    Xie X B,Lay T. 1994. The excitation of Lg waves by explosions:A finite-difference investigation[J]. Bull Seismol Soc Am,84(2):324–342.
    Yang G,Zhao L F,Xie X B,Zhang L,Yao Z X. 2021. High-precision relocation with the burial depths of the North Korean underground nuclear explosions by combining Pn and Pg differential traveltimes[J]. J Geophys Res:Solid Earth,126(6):e2020JB020745.
    Yao J Y,Tian D D,Sun L,Wen L X. 2018. Source characteristics of North Korea’s 3 September 2017 nuclear test[J]. Seismol Res Lett,89(6):2078–2084.
    Zhao L F,Xie X B,Wang W M,Yao Z X. 2012. Yield estimation of the 25 May 2009 North Korean nuclear explosion[J]. Bull Seismol Soc Am,102(2):467–478. doi: 10.1785/0120110163
    Zhao L F,Xie X B,Wang W M,Hao J L,Yao Z X. 2016. Seismological investigation of the 2016 January 6 North Korean underground nuclear test[J]. Geophys J Int,206(3):1487–1491. doi: 10.1093/gji/ggw239
    Zhao L F,Xie X B,Wang W M,Fan N,Zhao X,Yao Z X. 2017. The 9 September 2016 North Korean underground nuclear test[J]. Bull Seismol Soc Am,107(6):3044–3051. doi: 10.1785/0120160355
  • Related Articles

  • Cited by

    Periodical cited type(16)

    1. 王伟,翟法智,高星,尤加春. 盾构机数据采集系统的变差分系数波场模拟研究. 地球物理学进展. 2023(06): 2734-2746 .
    2. 陈金焕. 基于Spark的近地表速度模型快速层析反演. 石油物探. 2022(01): 146-155 .
    3. 邓迪,肖万博,王彦宾. 全火星模型中震波传播特征的数值模拟研究. 北京大学学报(自然科学版). 2020(04): 629-637 .
    4. 吴海燕,朱祖扬,张卫. 基于有限差分法和伪谱法的井孔声场数值模拟. 测井技术. 2018(03): 277-281 .
    5. 蔡志成,顾汉明,成景旺,刘春成,刘志斌,刘少勇. 大规模变网格三维地震正演MPI并行策略与实现. 石油地球物理勘探. 2017(03): 468-476+2-3 .
    6. 黄妍,陈彦阳,王彦宾. 柴达木盆地东部地震地面运动放大效应. 地震工程学报. 2017(03): 534-544 .
    7. 张建国. 虚谱法地震波场逆时偏移. 科技创新与应用. 2016(09): 71-72 .
    8. 张建国,王山山. 有限差分—虚谱混合法逆时地震偏移. 油气地球物理. 2016(01): 17-21 .
    9. 王洲鹏,王彦宾,张献兵. 表层沉积物特性对地震地面运动的影响研究. 地震工程学报. 2016(01): 120-128 .
    10. 崔丛越,张献兵,王彦宾. 基于图形处理器的伪谱和高阶有限差分混合方法地震波数值模拟. 地震学报. 2015(02): 289-298+370 . 本站查看
    11. 周丽,顾汉明,成景旺,刘春成,刘志斌,杨小春. 基于MPI的OBC三维多波多分量地震观测正演模拟并行算法实现. 石油物探. 2014(06): 665-674 .
    12. 严武建,王彦宾,石玉成. 基于伪谱和有限差分混合方法的兰州盆地强地面运动二维数值模拟. 地震工程学报. 2013(02): 302-310 .
    13. 郭明珠,赵芳,赵凤仙. 场地地震动局部地形效应研究进展. 震灾防御技术. 2013(03): 311-318 .
    14. 秦艳芳,王彦宾. 地震波传播的三维伪谱和高阶有限差分混合方法并行模拟. 地震学报. 2012(02): 147-156+282 . 本站查看
    15. 朱多林,白超英. 基于波动方程理论的地震波场数值模拟方法综述. 地球物理学进展. 2011(05): 1588-1599 .
    16. 李少华,王彦宾. 松软覆盖层对隐伏断层带围陷波的影响研究. 高原地震. 2011(02): 13-17 .

    Other cited types(13)

Catalog

    Article views (181) PDF downloads (43) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return