Citation: | Ding L S,Xie J B,Wu H D,Liao Y F,Ye S S,Lu Z J,Ma J M,Lü Z H. 2024. Analysis of monitoring capability of strong motion sation based on the probability interval of ambient noise. Acta Seismologica Sinica,46(3):539−555. DOI: 10.11939/jass.20220146 |
This study is based on the strong motion daily records from the dense network of seismic monitoring and early warning systems of the Pearl River Delta in eastern Guangdong. By utilizing the RMS density function of background noise at strong motion stations, we investigate the statistical characteristics of the background noise spectrum at these stations. We establish the average model, minimum model, and probability distribution interval for the RMS of background noise. This forms the basis for a method to analyze the monitoring capabilities of strong motion stations by comparing the probability distribution intervals of background noise RMS with the frequency-acceleration amplitude distribution curves of regional earthquake events.Using this method, we obtain the daily background noise acceleration RMS for different stations and estimate the probability of recording regional seismic events of various magnitudes, thereby evaluating the monitoring capabilities of the stations. The lower noise limits for different stations vary due to the interaction between instrument self-noise and environmental noise. The minimum model of background noise RMS can be used as an estimate of the optimal monitoring capability of a station, serving as a comprehensive indicator of both the strong motion instrument and the observation environment. This also contributes to discussions on the low-end cut-off frequency for denoising in the frequency domain within engineering seismology. The probability distribution interval analysis method for background noise RMS is an extension and expansion of the probability density distribution analysis of background noise RMS.
陈魁. 2000. 应用概率统计[M]. 北京:清华大学出版社:23−29.
|
Chen K. 2000. Applied Probability and Statistics[M]. Beijing:Tsinghua University Press:23−29 (in Chinese).
|
丁莉莎. 2014. 应用于高温环境下的地震传感器关键技术研究[D]. 北京:中国地震局地震预测研究所:64−78.
|
Ding L S. 2014. Research of Key Technology of Seismic Sensors Used in High Temperature[D] Beijing:Institute of Earthquake Forecasting,China Earthquake Administration:64−78 (in Chinese).
|
丁莉莎,马洁美,齐军伟,谢剑波,廖一帆,卢子晋,叶世山,劳谦,吕仲杭. 2021. 利用背景噪声的分形方法监控台站观测系统运行状态[J]. 大地测量与地球动力学,41(4):436−440.
|
Ding L S,Ma J M,Qi J W,Xie J B,Liao Y F,Lu Z J,Ye S S,Lao Q,Lü Z H. 2021. Discussion on monitoring the operating state of seismic station observation system by using fractal method of background noise[J]. Journal of Geodesy and Geodynamic,41(4):436−440 (in Chinese).
|
江汶乡. 2015. 面向地震预警的强震动数据处理技术研究[D]. 哈尔滨:中国地震局工程力学研究所:29−34.
|
Jiang W X. 2015. Research on Strong-Motion Data Processing Technology Oriented to Earthquake Early Warning[D]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration:29−34 (in Chinese).
|
卢大伟,李小军. 2010. 中国大陆强震动观测发展研究[J]. 国际地震动态,(10):35−42.
|
Lu D W,Li X J. 2010. Study on development of strong motion observation in China[J]. Recent Developments in World Seismology,(10):35−42 (in Chinese).
|
吕永清,蔡亚先,程骏玲. 2007. 确定地震计安装方位的相干性分析法[J]. 大地测量与地球动力学,27(4):124−127. doi: 10.3969/j.issn.1671-5942.2007.04.023
|
Lü Y Q,Cai Y X,Cheng J L. 2007. Orientation for seismometer with coherence analysing method[J]. Journal of Geodesy and Geodynamics,27(4):124−127 (in Chinese).
|
王广福. 1986. 地震观测系统的标定与检查[M]. 北京:地震出版社:117−120.
|
Wang G F. 1986. Calibration and Verification of Seismograph Systems[M]. Beijing:Seismological Press:117−120 (in Chinese).
|
中国地震局. 2017. DB/T 64-2016 强震动观测技术规程[S]. 北京:地震出版社,5.
|
China Earthquake Administration. 2017. DB/T 64−2016 Technical Regulations for Strong Motion Observation[S]. Beijing:Seismological Press:5 (in Chinese).
|
周雍年. 2006. 中国大陆的强震动观测[J]. 国际地震动态,(11):1−6. doi: 10.3969/j.issn.0253-4975.2006.11.001
|
Zhou Y N. 2006. Strong motion observation in Chinese continent[J]. Recent Developments in World Seismology,(11):1−6 (in Chinese).
|
Abd El-Aal A E A K,Soliman M S. 2013. New seismic noise models obtained using very broadband stations[J]. Pure Appl Geophys,170(11):1849−1857. doi: 10.1007/s00024-013-0640-7
|
Bormann P. 2002. New Manual of Seismological Observatory Practice (NMSOP) Volume 1[Z]. Potsdam:GeoForschungsZentrum:838−960.
|
Cauzzi C,Clinton J. 2013. A high- and low-noise model for high-quality strong-motion accelerometer stations[J]. Earthq Spectra,29(1):85−102. doi: 10.1193/1.4000107
|
Clinton J F,Heaton T H. 2002. Potential advantages of a strong-motion velocity meter over a strong-motion accelerometer[J]. Seismol Res Lett,73(3):332−342. doi: 10.1785/gssrl.73.3.332
|
El Fellah Y,Abd El-Aal A E A K,Harnafi M,Villaseñor A. 2017. New comprehensive standard seismic noise models and 3D seismic noise variation for morocco territory,North Africa,obtained using seismic broadband stations[J]. Explor Geophys,48(3):272−283. doi: 10.1071/EG15053
|
Gerner A,Bokelmann G. 2013. Instrument self-noise and sensor misalignment[J]. Adv Geosci,36:17−20. doi: 10.5194/adgeo-36-17-2013
|
Havskov J,Alguacil G. 2007. Instrumentation in Earthquake Seismology[M]. Dordrecht:Springer:1−349 .
|
Holcomb,L G. 2002. Experiments in Seismometer Azimuth Determination by Comparing the Sensor Signal Outputs with The Signal Output of An Oriented Sensor[R]. New Mexico:U. S. Geological Survey:2−183,206 .
|
Howard R M. 2002. The power spectral density and its application[C]//Principles of Random Signal Analysis and Low Noise Design:The Power Spectral Density and its Applications. Perth:Wiley:59−91.
|
Hutt C R,Evans J R,Followill F,Nigbor R L,Wielandt E. 2010. Guidelines for Standardized Testing of Broadband Seismometers and Accelerometers[R]. Virginia:U. S. Geological Survey:2009−1295.
|
NIED. 2019. NIED K−NET,KiK−net[DB/OL]. [2020−02−08].https://www.doi.org/10.17598/NIED.0004.
|
Peterson J R. 1993. Observations and Modeling of Seismic Background Noise[R]. New Mexico:U. S. Geological Survey:13−35.
|
Schorlemmer D,Woessner J. 2008. Probability of detecting an earthquake[J]. Bull Seismol Soc Am,98(5):2103−2117. doi: 10.1785/0120070105
|
Schultz R,Stern V,Gu Y J,Eaton D. 2015. Detection threshold and location resolution of the alberta geological survey earthquake catalogue[J]. Seismol Res Lett,86(2A):385−397. doi: 10.1785/0220140203
|
Sleeman R. 2006. Three-channel correlation analysis:A new technique to measure instrumental noise of digitizers and seismic sensors[J]. Bull Seismol Soc Am,96(1):258−271. doi: 10.1785/0120050032
|
Stehly L,Campillo M,Shapiro N M. 2006. A study of the seismic noise from its long-range correlation properties[J]. J Geophys Res:Solid Earth,111(B10):B10306.
|
Tasič I,Runovc F. 2013. Determination of a seismometer’s generator constant,azimuth,and orthogonality in three-dimensional space using a reference seismometer[J]. J Seismol,17(2):807−817. doi: 10.1007/s10950-012-9355-y
|
Welch P. 1967. The use of fast Fourier transform for the estimation of power spectra:A method based on time averaging over short,modified periodograms[J]. IEEE Trans Audio Electroacoust,15(2):70−73. doi: 10.1109/TAU.1967.1161901
|
Xie J B,Yang D K,Ding L S,Yuan S Y,Chen J T,Lu Z J,Ye S S,Ma J M,Zhao J H,Li X J. 2018. A comparison of azimuth,misalignment,and orthogonality estimation methods in seismometer testing[J]. Bull Seismol Soc Am,108(2):1004−1017.
|