Citation: | Wu Y C,Yang T. 2023. Removing tilt noise from the vertical component data of ocean bottom seismograph:A case study on the data from the Pankun test in the South China Sea. Acta Seismologica Sinica,45(3):568−578. DOI: 10.11939/jass.20220163 |
Based on the correlations between the noise data of the horizontal and the vertical components, we can remove the tilt noise from the vertical component by using the transfer function of the horizontal-to-vertical component. Using the data from the 2019−2020 Pankun OBS South China Sea test, this paper describes the theory and process of this method. It compares the seismograms before and after removing the tilt noise and highlights the improvement of the dispersions of Rayleigh surface waves. The results show that removing tilt noise can improve the signal-to-noise ratio of seismograms for the OBS data in the low-frequency range, resulting in surface waves more conducive to imaging the deep structure of the oceanic lithosphere. This study also shows that although the tilt angle (1.0°) of the seismometer of Pankun OBS is much smaller than the tolerance of the tilt angle of the instrument (2.5°), the bottom currents still generate a significant level of tilt noise on OBS data. Therefore, the leveling system of the instrument is a crucial component affecting the OBS data quality.
刘丹,杨挺,黎伯孟,吴越楚,王宜志,黄信锋,杜浩然,王建,陈永顺. 2022. 分体式宽频带海底地震仪的研制、测试和数据质量分析[J]. 地球物理学报,65(7):2560–2572.
|
Liu D,Yang T,Le B M,Wu Y C,Wang Y Z,Huang X F,Du H R,Wang J,Chen Y S. 2022. Seismometer-detached broadband ocean bottom seismograph (OBS):Development,test,and data quality analysis[J]. Chinese Journal of Geophysics,65(7):2560–2572 (in Chinese).
|
Agius M R,Rychert C A,Harmon N,Laske G. 2017. Mapping the mantle transition zone beneath Hawaii from PS receiver functions:Evidence for a hot plume and cold mantle downwellings[J]. Earth Planet Sci Lett,474:226–236. doi: 10.1016/j.jpgl.2017.06.033
|
An C,Cai C,Zhou L,Yang T. 2021. Characteristics of low-frequency horizontal noise of ocean-bottom seismic data[J]. Seismol Res Lett,93(1):257–267. doi: 10.1785/0220200349
|
Bell S W,Forsyth D W,Ruan Y Y. 2015. Removing noise from the vertical component records of ocean-bottom seismometers:Results from year one of the Cascadia Initiative[J]. Bull Seismol Soc Am,105(1):300–313. doi: 10.1785/0120140054
|
Bell S,Ruan Y Y,Forsyth D W. 2016. Ridge asymmetry and deep aqueous alteration at the trench observed from Rayleigh wave tomography of the Juan de Fuca plate[J]. J Geophys Res:Solid Earth,121(10):7298–7321. doi: 10.1002/2016JB012990
|
Bendat J S, Piersol A G. 1986. Random Data: Analysis and Measurement Procedures[M]. 2nd ed. Hoboken, New Jersey: John Wiley and Sons.
|
Bowden D C,Kohler M D,Tsai V C,Weeraratne D S. 2016. Offshore southern California lithospheric velocity structure from noise cross-correlation functions[J]. J Geophys Res:Solid Earth,121(5):3415–3427. doi: 10.1002/2016JB012919
|
Cai C,Wiens D A,Shen W S,Eimer M. 2018. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data[J]. Nature,563(7731):389–392. doi: 10.1038/s41586-018-0655-4
|
Collins J A,Vernon F L,Orcutt J A,Stephen R A,Peal K R,Wooding F B,Spiess F N,Hildebrand J A. 2001. Broadband seismology in the oceans:Lessons from the ocean seismic network pilot experiment[J]. Geophys Res Lett,28(1):49–52. doi: 10.1029/2000GL011638
|
Crawford W C,Webb S C. 2000. Identifying and removing tilt noise from low-frequency (<0.1 Hz) seafloor vertical seismic data[J]. Bull Seismol Soc Am,90(4):952–963. doi: 10.1785/0119990121
|
Doran A K,Laske G. 2019. Seismic structure of marine sediments and upper oceanic crust surrounding Hawaii[J]. J Geophys Res:Solid Earth,124(2):2038–2056. doi: 10.1029/2018JB016548
|
Duennebier F K,Blackinton G,Sutton G H. 1981. Current-generated noise recorded on ocean bottom seismometers[J]. Mar Geophys Res,5(1):109–115. doi: 10.1007/BF00310316
|
Eilon Z C,Gaherty J B,Zhang L,Russell J,McPeak S,Phillips J,Forsyth D W,Ekström G. 2022. The Pacific OBS research into convecting asthenosphere (ORCA) experiment[J]. Seismol Res Lett,93(1):477–493. doi: 10.1785/0220210173
|
Hung T D,Yang T,Le B M,Yu Y Q. 2019. Effects of failure of the ocean-bottom seismograph leveling system on receiver function analysis[J]. Seismol Res Lett,90(3):1191–1199. doi: 10.1785/0220180276
|
Janiszewski H A,Gaherty J B,Abers G A,Gao H,Eilon Z C. 2019. Amphibious surface-wave phase-velocity measurements of the Cascadia subduction zone[J]. Geophys J Int,217(3):1929–1948. doi: 10.1093/gji/ggz051
|
Liu C G,Hua Q F,Pei Y L,Yang T,Xia S H,Xue M,Le B M,Huo D,Liu F,Huang H B. 2014. Passive-source ocean bottom seismograph (OBS) array experiment in South China Sea and data quality analyses[J]. Chinese Science Bull,59(33):4524–4535. doi: 10.1007/s11434-014-0369-4
|
Liu D,Yang T,Wang Y,Wu Y,Huang X. 2023. Pankun:A New Generation of Broadband Ocean Bottom Seismograph[J]. Sensors,23(11):4995. doi: 10.3390/s23114995
|
Lin P Y P,Gaherty J B,Jin G,Collins J A,Lizarralde D,Evans R L,Hirth G. 2016. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere[J]. Nature,535(7613):538–541. doi: 10.1038/nature18012
|
Moore R D,Dorman L M,Huang C Y,Berliner D L. 1981. An ocean bottom,microprocessor based seismometer[J]. Mar Geophys Res,4(4):451–477. doi: 10.1007/BF00286039
|
Peterson J R. 1993. Observations and Modeling of Seismic Background Noise[R]. Albuquerque: U. S. Geological Survey.
|
Shiobara H,Kanazawa T,Isse T. 2013. New step for broadband seismic observation on the seafloor:BBOBS-NX[J]. IEEE J Oceanic Eng,38(2):396–405. doi: 10.1109/JOE.2012.2222792
|
Stähler S C,Sigloch K,Hosseini K,Crawford W C,Barruol G,Schmidt-Aursch M C,Tsekhmistrenko M,Scholz J R,Mazzullo A,Deen M. 2016. Performance report of the RHUM-RUM ocean bottom seismometer network around La Réunion,western Indian Ocean[J]. Adv Geosci,41:43–63. doi: 10.5194/adgeo-41-43-2016
|
Stephen R A, Spiess F N, Collins J A, Hildebrand J A, Orcutt J A, Peal K R, Vernon F L, Wooding F B. 2003. Ocean seismic network pilot experiment[J]. Geochem Geophys Geosyst, 4(10). doi: 10.1029/2002gc000485.
|
Tian Y,Ritzwoller M H. 2017. Improving ambient noise cross-correlations in the noisy ocean bottom environment of the Juan de Fuca plate[J]. Geophys J Int,210(3):1787–1805. doi: 10.1093/gji/ggx281
|
Toomey D R,Allen R M,Barclay A H,Bell S W,Bromirski P D,Carlson R L,Chen X W,Collins J A,Dziak R P,Evers B,Forsyth DW,Gerstoft P,Hooft E E E,Livelybrooks D,Lodewyk J A,Luther D S,McGuire J J,Schwartz S Y,Tolstoy M,Tréhu A M,Weirathmueller M,Wilcock W S D. 2014. The Cascadia initiative:A sea change in seismological studies of subduction zones[J]. Oceanography,27(2):138–150. doi: 10.5670/oceanog.2014.49
|
Wang Y Z,Yang T,Wu Y C,Liu D,Huang X F,Wang J,Zhong W X,Shou H T,Zhou Y,Chen Y S. 2022. A new broad-band ocean bottom seismograph and characteristics of the seismic ambient noise on the South China Sea seafloor based on its recordings[J]. Geophys J Int,230(1):684–695. doi: 10.1093/gji/ggac092
|
Webb S C. 1988. Long-period acoustic and seismic measurements and ocean floor currents[J]. IEEE J Oceanic Eng,13(4):263–270. doi: 10.1109/48.9239
|
Webb S C. 1998. Broadband seismology and noise under the ocean[J]. Rev Geophys,36(1):105–142. doi: 10.1029/97RG02287
|
Webb S C,Crawford W C. 1999. Long-period seafloor seismology and deformation under ocean waves[J]. Bull Seismol Soc Am,89(6):1535–1542. doi: 10.1785/BSSA0890061535
|
Wooding F B,Peal K R,Collins J A. 2001. Seafloor seismometer burial[J]. Sea Technol,42(8):10–13.
|
Yang Z H, Sheehan A F, Collins J A, Laske G. 2012. The character of seafloor ambient noise recorded offshore New Zealand: Results from the MOANA ocean bottom seismic experiment[J]. Geochem Geophys Geosyst, 13(10). doi: 10.1029/2012gc004201.
|