Xu L J,Lü M,Zhang H,Yu Y,Xie L L. 2024. Relative motions between cross-fault sites resultd from the 1999 MW7.6 Taiwan Chi-Chi earthquake. Acta Seismologica Sinica46(3):425−441. DOI: 10.11939/jass.20220170
Citation: Xu L J,Lü M,Zhang H,Yu Y,Xie L L. 2024. Relative motions between cross-fault sites resultd from the 1999 MW7.6 Taiwan Chi-Chi earthquake. Acta Seismologica Sinica46(3):425−441. DOI: 10.11939/jass.20220170

Relative motions between cross-fault sites resultd from the 1999 MW7.6 Taiwan Chi-Chi earthquake

More Information
  • Received Date: September 11, 2022
  • Revised Date: November 29, 2022
  • Available Online: May 24, 2023
  • In order to obtain more accurate residual displacement information generated by near-fault ground motion, this paper proposed a variable step-grid search method for ground motion baseline correction. The core of this method lies in preserving and accurately reflecting the residual displacement information of faults, and solving the problem of extremely low computational efficiency in traditional grid search methods when there are many digital seismic sampling points. Based on the strong ground motion data of the 1999 MW7.6 Chi-Chi earthquake in Taiwan region, this paper uses the variable step-grid search method for ground motion baseline correction to conduct in-depth research on the ground motion displacement characteristics near faults. By accurately correcting the initial moment of ground motion time history, this study successfully obtained relative ground motion time history data between multiple sets of the hanging and foot wall stations in the Chi-Chi earthquake. And based on this data, the displacement time history characteristics of the relative motion between the hanging and foot wall sites near the fault were analyzed. The research results indicate that the fling-step effect of ground motion is particularly significant in the Chi-Chi earthquake. The maximum displacement and residual displacement of near fault ground motion exceed 8 m and 6 m, respectively, and the average sliding velocity of the fault is as high as 1.4 m/s, fully demonstrating the strong destructive force of the earthquake. This poses challenges to the numerical simulation of fault rupture and related experimental researches. In addition, the relative motion between fault walls also exhibits similar motion characteristics to near fault ground motion, and its amplitude is larger. Therefore, the relative motion data between earthquake fault walls can refer to the time history of near fault ground motion as the input basis for engineering design and analysis. In addition, the residual displacement of the fault is about 80% of the maximum relative displacement between the fault walls. This study provides important information on residual displacement of fault ground motion, which is of great significance to the researches on fields such as earthquake engineering, earthquake warning, and disaster assessment.

  • 曹志磊,周琼,葛计划,孙军,隆爱军,龙剑锋,赵希磊. 2019. 郯庐断裂带安徽段及“霍山窗”断层活动特征与地震关联性研究[J]. 大地测量与地球动力学,39(7):681–685.
    Cao Z L,Zhou Q,Ge J H,Sun J,Long A J,Long J F,Zhao X L. 2019. Fault activity and correlation study of Tan-Lu fault zone and “Huoshan Seismic Window"[J]. Journal of Geodesy and Geodynamics,39(7):681–685 (in Chinese).
    陈勇,陈鲲,俞言祥. 2007. 用集集主震记录研究近断层强震记录的基线校正方法[J]. 地震工程与工程振动,27(4):1–7. doi: 10.3969/j.issn.1000-1301.2007.04.001
    Chen Y,Chen K,Yu Y X. 2007. Base line correction method for near-fault accelerograms using Chi-Chi main shock record[J]. Journal of Earthquake Engineering and Engineering Vibration,27(4):1–7 (in Chinese).
    高波,王峥峥,袁松,申玉生. 2009. 汶川地震公路隧道震害启示[J]. 西南交通大学学报,44(3):336–341.
    Gao B,Wang Z Z,Yuan S,Shen Y S. 2009. Lessons learnt from damage of highway tunnels in Wenchuan earthquake[J]. Journal of Southwest Jiaotong University,44(3):336–341 (in Chinese).
    胡进军. 2009. 近断层地震动方向性效应及超剪切破裂研究[D]. 哈尔滨: 中国地震局工程力学研究所: 126–133.
    Hu J J. 2009. Directivity Effect of Near-Fault Ground Motion and Super-Shear Rupture[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 126–133 (in Chinese).
    胡聿贤. 2006. 地震工程学[M]. 第二版. 北京: 地震出版社: 13–14.
    Hu Y X. 2006. Earthquake engineering[M]. Second edition. Beijing: Seismological Press: 13–14 (in Chinese).
    黄润秋,李为乐. 2009. 汶川大地震触发地质灾害的断层效应分析[J]. 工程地质学报,17(1):19–28.
    Huang R Q,Li W L. 2009. Fault effect analysis of geo-hazard triggered by Wenchuan earthquake[J]. Journal of Engineering Geology,17(1):19–28 (in Chinese).
    李爽,周洪圆,刘向阳,贾俊峰. 2020. 基于中国规范的近断层区抗震设计谱研究[J]. 建筑结构学报,41(2):7–12.
    Li S,Zhou H Y,Liu X Y,Jia J F. 2020. Study on near-fault seismic design spectra based on Chinese Code for Seismic Design of Buildings[J]. Journal of Building Structures,41(2):7–12 (in Chinese).
    王栋,谢礼立,胡进军. 2008. 倾斜断层不对称分布引起的几何效应:上下盘效应[J]. 地震学报,30(3):271–278. doi: 10.3321/j.issn:0253-3782.2008.03.006
    Wang D,Xie L L,Hu J J. 2008. Geometric effects resulting from the asymmetry of dipping fault:Hanging wall/footwall effects[J]. Acta Seismologica Sinica,30(3):271–278 (in Chinese).
    王永安,李琼,刘强. 2011. 跨断层形变累积率的变化特征与云南地区强震[J]. 地震研究,34(2):136–142.
    Wang Y A,Li Q,Liu Q. 2011. Variation of the cumulative rate of cross-fault deformation and strong earthquakes in Yunnan[J]. Journal of Seismological Research,34(2):136–142 (in Chinese).
    谢礼立,徐龙军,陶晓燕,杨绪剑. 2021. 跨断层土木工程研究与实验装置研发现状[J]. 工程力学,38(4):20–29.
    Xie L L,Xu L J,Tao X Y,Yang X J. 2021. Research status of civil engineering structures across faults and the development of experimental devices for fault simulation[J]. Engineering Mechanics,38(4):20–29 (in Chinese).
    喻畑,李小军. 2012. 基于NGA模型的汶川地震区地震动衰减关系[J]. 岩土工程学报,34(3):552–558.
    Yu T,Li X J. 2012. Attenuation relationship of ground motion for Wenchuan earthquake region based on NGA model[J]. Chinese Journal of Geotechnical Engineering,34(3):552–558 (in Chinese).
    俞言祥,高孟潭. 2001. 台湾集集地震近场地震动的上盘效应[J]. 地震学报,23(6):615–621.
    Yu Y X,Gao M T. 2001. Effects of the hanging wall and footwall on peak acceleration during the Jiji (Chi-Chi),Taiwan Province,earthquake[J]. Acta Seismologica Sinica,14(6):654–659.
    张红艳,谢富仁. 2013. 天山地区跨断层形变观测与地壳应力特征[J]. 西北大学学报(自然科学版),43(4):617–622.
    Zhang H Y,Xie F R. 2013. Cross-fault deformation observation and characteristics of crustal stress in Tianshan region[J]. Journal of Northwest University (Natural Science Edition),43(4):617–622 (in Chinese).
    周云好,陈章立,缪发军. 2004. 2001年11月14日昆仑山口西MS8.1地震震源破裂过程研究[J]. 地震学报,26(增刊):9–20.
    Zhou Y H,Chen Z L,Miao F J. 2004. Source process of the 14 November 2001westhern Kunlun mountain MS8.1 earthquake[J]. Acta Seismological Sinica,26(S1):9–20 (in Chinese).
    Abrahamson N A. 2000. Near-fault ground motions from the 1999 Chi-Chi earthquake[C]//Proc. of US-Japan Workshop on the Effects of Near-Field Earthquake Shaking. San Francisco, California: Pacific Earthquake Engineering Research Center: 11−13.
    Bolt B A. 1999. Earthquakes[M]. Fourth edition. New York: W.H. Freeman and Company: 52–53.
    Boore D M. 2001. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi,Taiwan,earthquake[J]. Bull Seismol Soc Am,91(5):1199–1211.
    Bray J D,Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthq Eng,24(11):815–828. doi: 10.1016/j.soildyn.2004.05.001
    Chao W A,Wu Y M,Zhao L. 2009. An automatic scheme for baseline correction of strong-motion records in coseismic deformation determination[J]. J Seismol,14(3):495–504.
    Chu D B, Brandenberg S J, Lin P S. 2008. Performance of bridges in liquefied ground during 1999 Chi-Chi earthquake[C]//The 14th WCEE. Beijing: CAEE and IAEE: 13–17.
    Dong J J, Wang C D, Lee C T, Liao J J, Pan Y W. 2004. The influence of surface ruptures on building damage in the 1999 Chi-Chi earthquake: A case study in Fengyuan City[J]. Engineering Geology, 71(1/2): 157–179.
    Iwan W D,Moser M A,Peng C Y. 1985. Some observations on strong motion earthquake measurement using a digital accelerograph[J]. Bull Seismol Soc Am,75(5):1225–1246. doi: 10.1785/BSSA0750051225
    Kawashima K. 2002. Damage of bridges resulting from fault rupture in the 1999 Kocaeli and Duzce, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake[J]. Structural Eng/Earthq Eng, 19(2 Special Issue): 179−197.
    Lee W H K, Shin T C, Kuo K W, Chen K C, Wu C F. 2001. CWB free-field strong-motion data from the 21 September Chi-Chi, Taiwan, earthquake[J]. Bull Seismol Soc Am, 91(5): 1370−1376.
    Lin M L,Lin C H,Li C H,Liu C Y,Hung C H. 2021. 3D modeling of the ground deformation along the fault rupture and its impact on engineering structures:Insights from the 1999 Chi-Chi earthquake,Shigang District,Taiwan[J]. Eng Geol,281:105993. doi: 10.1016/j.enggeo.2021.105993
    Ma K F,Mori J,Lee S J,Yu S B. 2001. Spatial and temporal distribution of slip for the 1999 Chi-Chi,Taiwan earthquake[J]. Bull Seismol Soc Am,91(5):1069–1087.
    Mccomb H,Ruge A,Neumann F. 1943. The determination of true ground motion by integration of strong-motion records:A symposium[J]. Bull Seismol Soc Am,33(1):1. doi: 10.1785/BSSA0330010001
    Ota Y,Watanabe M,Suzuki Y,Yanagida M,Miyawaki A,Sawa H. 2007. Style of the surface deformation by the 1999 Chichi earthquake at the central segment of Chelungpu fault,Taiwan,with special reference to the presence of the main and subsidiary faults and their progressive deformation in the Tsauton area[J]. J Asia Earth Sci,31(3):214–225. doi: 10.1016/j.jseaes.2006.07.030
    Somerville P G,Smith N F,Graves R W,Abrahamson N A. 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismol Res Lett,68(1):199–222. doi: 10.1785/gssrl.68.1.199
    Wang G Q,Zhou X Y,Zhang P Z,Igel H. 2002. Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi,Taiwan earthquake[J]. Soil Dyn Earthq Eng,22(1):73–96. doi: 10.1016/S0267-7261(01)00047-1
    Wang R J,Schurr B,Milkereit C,Shao Z G,Jin M P. 2011. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bull Seismol Soc Am,101(5):2029–2044. doi: 10.1785/0120110039
    Wang W L,Wang T T,Su J J,Lin C H,Seng C R,Huang T H. 2001. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake[J]. Tunn Undergr Space Technol,16(3):133–150. doi: 10.1016/S0886-7798(01)00047-5
    Wu Y M, Wu C F. 2007. Approximate recovery of coseismic deformation from Taiwan strong-motion records[J]. J Seismol, 11(2): 159–170.
    Xu L J,Zhao G C,Gardoni P,Xie L L. 2018. Quantitatively determining the high-pass filter cutoff period of ground motions[J]. Bull Seismol Soc Am,108(2):857–865. doi: 10.1785/0120170074
    Zhao G C,Xu L J,Gardoni P,Xie L L. 2019. A new method of deriving the acceleration and displacement design spectra of pulse-like ground motions based on the wavelet multi-resolution analysis[J]. Soil Dyn Earthq Eng,119:1–10. doi: 10.1016/j.soildyn.2019.01.008
  • Related Articles

  • Cited by

    Periodical cited type(2)

    1. 殷伟伟,郑亚迪,张蕙. 影响山西台网地震定位因素的定量分析. 大地测量与地球动力学. 2024(05): 534-538 .
    2. 郝春月,郑重. 地震台阵监测能力综述. 地震地磁观测与研究. 2020(06): 3-14 .

    Other cited types(0)

Catalog

    Article views (396) PDF downloads (103) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return