Wu Y F,Tang F T,Jiang X D. 2024. Seismogenic structure of the earthquake surface rupture zone along the Maisu fault. Acta Seismologica Sinica46(5):751−766. DOI: 10.11939/jass.20220225
Citation: Wu Y F,Tang F T,Jiang X D. 2024. Seismogenic structure of the earthquake surface rupture zone along the Maisu fault. Acta Seismologica Sinica46(5):751−766. DOI: 10.11939/jass.20220225

Seismogenic structure of the earthquake surface rupture zone along the Maisu fault

More Information
  • Received Date: December 18, 2022
  • Revised Date: April 03, 2023
  • Available Online: July 02, 2023
  • Field geological survey revealed the presence of an earthquake surface rupture zone 50 km long near the Maisu fault in the northern segment of the Jinshajiang fault zone, with a maximum vertical offset of 2 m. Based on the continuous waveform data of a dense seismic array set up around the rupture zone from December 2020 to July 2022, 578 seismic events in the area of 31.55°N−31.85°N and 98.31°E−98.98°E were located by using the double-difference location method. The obtained seismic events were then analyzed using the HASH method based on P-wave initial motion to invert the focal mechanisms, and 37 focal mechanism solutions were acquired. The stress state of the study area was further analyzed by using the damped region-scale stress inversions method based on the focal mechanism solutions. The precise location results show that within the study area, there is a seismic belt 40 km long oriented WNW−ESE along the earthquake surface rupture zone, with focal depths clustered in the range of 3−10 km, and the depth profile steeply dips to the north. Moreover, there is another belt 30 km long oriented NNW−SSE, with focal depths concentrated at 3−11 km, dipping to the west. The results of focal mechanism solutions indicate that source mechanisms in this area are mostly strike-sip, accounting for 51.4% of the total. In addition, there are also a small number of reverse and normal fault mechanisms. The dominant azimuth of the P-axis of the focal mechanism solution is nearly NW−SE, which is similar to the direction of the maximum principal compressive stress σ1 at 323°. The overall dips of the P-axes, T-axes, maximum compressive stress σ1, and minimum compressive stress σ3 are small, suggesting that it is under an NW-SE oriented horizontal compressive stress regime. The stress structure is strike-slip, consistent with the earthquake location and focal mechanism solution results. The stress factor (R=0.57) indicates that the maximum compressive stress σ1, the intermediate compressive stress σ2 and the minimum compressive stress σ3 are basically in arithmetic progression, where σ1 and σ3 are determined. The WNW−ESE seismic belt exhibits dextral strike-slip with both normal and reverse components, while the NNW−SSE belt shows sinistral strike-slip, displaying conjugate fault features. It is concluded that this area has experienced at least one earthquake with M>7.0. The near NW-SE horizontal compressive stress state is related to the intense sinistral movement of the NW−SE oriented Garze-Yushu-Xianshuihe fault zone.

  • 陈立春,王虎,冉勇康,孙鑫喆,苏桂武,王继,谭锡斌,李智敏,张晓清. 2010. 玉树MS7.1 级地震地表破裂与历史大地震[J]. 科学通报,55(13):1200–1205.
    Chen L C,Wang H,Ran Y K,Sun X Z,Su G W,Wang J,Tan X B,Li Z M,Zhang X Q. 2010. The MS7.1 Yushu earthquake surface rupture and large historical earthquakes on the Garzê-Yushu fault[J]. Chinese Science Bulletin,55(31):3504–3509. doi: 10.1007/s11434-010-4079-2
    程佳. 2008. 川西地区现今地壳运动的大地测量观测研究[D]. 北京: 中国地震局地质研究所: 45–55
    Cheng J. 2008. Present-Day Crustal Deformation of Western Sichuan Inferred From Geodetic Observations[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 45–55 (in Chinese).
    崔效锋,谢富仁,张红艳. 2006. 川滇地区现代构造应力场分区及动力学意义[J]. 地震学报,28(5):451–461. doi: 10.3321/j.issn:0253-3782.2006.05.001
    Cui X F,Xie F R,Zhang H Y. 2006. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest[J]. Acta Seismologica Sinica,19(5):485–496. doi: 10.1007/s11589-006-0501-x
    邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学:D 辑,32(12):1020–1030.
    Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Basic characteristics of active tectonics of China[J]. Science in China:Series D,46(4):356–372.
    邓起东,闻学泽. 2008. 活动构造研究:历史、进展与建议[J]. 地震地质,30(1):1–30. doi: 10.3969/j.issn.0253-4967.2008.01.002
    Deng Q D,Wen X Z. 2008. A review on the research of active tectonics:History,progess and suggestions[J]. Seismology and Geology,30(1):1–30 (in Chinese).
    杜方,龙锋,阮祥,易桂喜,宫悦,赵敏,张致伟,乔慧珍,汪智,吴江. 2013. 四川芦山 7.0 级地震及其与汶川 8.0 级地震的关系[J]. 地球物理学报,56(5):1772–1783.
    Du F,Long F,Ruan X,Yi G X,Gong Y,Zhao M,Zhang Z W,Qiao H Z,Wang Z,Wu J. 2013. The M7.0 Lushan earthquake and the relationship with the M8.0 Wenchuan earthquake in Sichuan,China[J]. Chinese Journal of Geophysics,56(5):1772–1783 (in Chinese).
    郭祥云,陈学忠,王生文,王恒信. 2014. 川滇地区中小地震震源机制解及构造应力场的研究[J]. 地震工程学报,36(3):599–607.
    Guo X Y,Chen X Z,Wang S W,Wang H X. 2014. Focal mechanism of small and moderate earthquakes and tectonic stress field in Sichuan-Yunnan areas[J]. China Earthquake Engineering Journal,36(3):599–607 (in Chinese).
    黄骥超,万永革,盛书中,李祥,高熹微. 2016. 汤加—克马德克俯冲带现今非均匀应力场特征及其动力学意义[J]. 地球物理学报,59(2):578–592.
    Huang J C,Wan Y G,Sheng S Z,Li X,Gao X W. 2016. Heterogeneity of present-­day stress field in the Tonga-­Kermadec subduction zone and its geodynamic significance[J]. Chinese Journal of Geophysics,59(2):578–592 (in Chinese).
    黄媛,杨建思,张天中. 2006. 2003年新疆巴楚—伽师地震序列的双差法重新定位研究[J]. 地球物理学报,49(1):162–169.
    Huang Y,Yang J S,Zhang T Z. 2006. Relocation of the Bachu-Jiashi,Xinjiang earthquake sequence in 2003 using the double-difference location algorithm[J]. Chinese Journal of Geophysics,49(1):162–169 (in Chinese). doi: 10.1002/cjg2.822
    蒋海昆,郑建常,吴琼,曲延军,李永莉,代磊. 2007. 中国大陆中强以上地震余震分布尺度的统计特征[J]. 地震学报,29(2):151–164.
    Jiang H K,Zhen J C,Wu Q,Qu Y J,Li Y L,Dai L. 2007. Statistical features of aftershock distribution size for mode-rate and large earthquakes in Chinese mainland[J]. Acta Seismologica Sinica,29(2):151–164 (in Chinese).
    阚荣举,张四昌,晏凤桐,俞林胜. 1977. 我国西南地区现代构造应力场与现代构造活动特征的探讨[J]. 地球物理学报,20(2):96–109.
    Kan R J,Zhang S C,Yan F T,Yu L S. 1977. Present tectonic stress field and its relation to the characteristics of recent tectonic activity in southwestern China[J]. Acta Geophysica Sinica,20(2):96–109 (in Chinese).
    李晗,常旭. 2021. 微地震震源机制研究进展[J]. 中国科学:地球科学,51(3):325–338.
    Li H,Chang X. 2021. A review of the microseismic focal mechanism research[J]. Science China Earth Sciences,64(3):351–363. doi: 10.1007/s11430-020-9658-7
    鲁人齐,房立华,郭志,张金玉,王伟,苏鹏,陶玮,孙晓,刘冠伸,单新建,何宏林. 2022. 2022年6月1日四川芦山MS6.1强震构造精细特征[J]. 地球物理学报,65(11):4299–4310.
    Lu R Q,Fang L H,Guo Z,Zhang J Y,Wang W,Su P,Tao W,Sun X,Liu G S,Shan X J,He H L. 2022. Detailed structural characteristics of the 1 June 2022 MS6.1 Sichuan Lushan strong earthquake[J]. Chinese Journal of Geophysics,65(11):4299–4310 (in Chinese).
    孟文,郭祥云,李永华,韩立波,张重远. 2022. 青藏高原东北缘构造应力场及动力学特征[J]. 地球物理学报,65(9):3229–3251.
    Meng W,Guo X Y,Li Y H,Han L B,Zhang C Y. 2022. Tectonic stress field and dynamic characteristics in the northeastern margin of the Tibetan Plateau[J]. Chinese Journal of Geophysics,65(9):3229–3251 (in Chinese).
    沈军,陈建波,王翠,吴传勇,宋正娜. 2006. 2003 年 2 月 24 日新疆巴楚—伽师 6.8 级地震发震构造[J]. 地震地质,28(2):205–212.
    Shen J,Chen J B,Wang C,Wu C Y,Song Z N. 2006. The seismogenic tectonics of the MS6.8 Bachu-Jiashi,Xinjiang earthquake in Feb. 24,2003[J]. Seismology and Geology,28(2):205–212 (in Chinese).
    孙银涛,徐国栋,龙海云,许立红. 2016. 震级与破裂长度统计关系研究[J]. 地震学报,38(5):803–806.
    Sun Y T,Xu G D,Long H Y,Xu L H. 2016. Relationship between magnitude and rupture length[J]. Acta Seismologica Sinica,38(5):803–806 (in Chinese).
    王阎昭,王恩宁,沈正康,王敏,甘卫军,乔学军,孟国杰,李铁明,陶玮,杨永林,程佳,李鹏. 2008. 基于GPS资料约束反演川滇地区主要断裂现今活动速率[J]. 中国科学:D 辑,38(5):582–597.
    Wang Y Z,Wang E N,Shen Z K,Wang M,Gan W J,Qiao X J,Meng G J,Li T M,Tao W,Yang Y L,Cheng J,Li P. 2008. GPS-constrained inversion of present-day slip rates along major faults of the Sichuan-Yunnan region,China[J]. Science in China:Series D,51(9):1267–1287. doi: 10.1007/s11430-008-0106-4
    闻学泽,徐锡伟,郑荣章,谢英情,万创. 2003. 甘孜—玉树断裂的平均滑动速率与近代大地震破裂[J]. 中国科学:D 辑,33(B04):199–208.
    Wen X Z,Xu X W,Zheng R Z,Xie Y Q,Wang C. 2003. Average slip-rate and recent large earthquake ruptures along the Ganzi-Yushu fault[J]. Science in China:Series D,33(B04):199–208 (in Chinese).
    谢富仁,祝景忠,粱海庆,刘光勋. 1993. 中国西南地区现代构造应力场基本特征[J]. 地震学报,15(4):407–417.
    Xie F Z,Zhu J Z,Liang H Q,Liu G X. 1993. Basic characteristics of modern tectonic stress field in southwest China[J]. Acta Seismologica Sinica,15(4):407–417 (in Chinese).
    徐锡伟,闻学泽,郑荣章,马文涛,宋方敏,于贵华. 2003. 川滇地区活动块体最新构造变动样式及其动力来源[J]. 中国科学:D辑,33(增刊):151–151.
    Xu X W,Wen X Z,Zheng R Z,Ma W T,Song F M,Yu G H. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region,China[J]. Science in China:Series D,46(2):210–226.
    徐锡伟,张培震,闻学泽,秦尊丽,陈桂华,朱艾斓. 2005a. 川西及其邻近地区活动构造基本特征与强震复发模型[J]. 地震地质,27(3):446–461.
    Xu X W,Zhang P Z,Wen X Z,Qin Z L,Chen G H,Zhu A L. 2005a. Features of active tectonics and recurrence behaviors of strong earthquakes in the western Sichuan Province and its adjacent regions[J]. Seismology and Geology,27(3):446–461 (in Chinese).
    徐锡伟,闻学泽,于贵华,郑荣章,罗海原,郑斌. 2005b. 川西理塘断裂带平均滑动速率、地震破裂分段与复发特征[J]. 中国科学:D 辑,35(6):540–551.
    Xu X W,Wen X Z,Yu G H,Zheng R Z,Luo H Y,Zheng B. 2005b. Average slip rate,earthquake rupturing segmentation and recurrence behavior on the Litang fault zone,western Sichuan Province,China[J]. Science in China:Series D,35(6):540–551 (in Chinese).
    徐锡伟, 韩竹军, 杨晓平, 张世民, 于贵华, 周本刚, 李峰, 马保起, 陈桂华, 冉勇康. 2015. 中国大陆及邻近地区地震构造图[M]. 北京: 地震出版社: 1−64.
    Xu X W, Han Z J, Yang X P, Zhang S M, Yu G H, Zhou B G, Li F, Ma B Q, Chen G H, Ran Y K. 2015. Seismic Structure Map of Mainland China and Adjacent Areas[M]. Beijing: Seismological Press: 1−64.
    许忠淮,汪素云,黄雨蕊,高阿甲,金小锋,常向东. 1987. 由多个小震推断的青甘和川滇地区地壳应力场的方向特征[J]. 地球物理学报,30(5):476–486. doi: 10.3321/j.issn:0001-5733.1987.05.005
    Xu Z H,Wang S Y,Huang Y R,Gao A J,Jin X F,Chang X D. 1987. Directions of mean stress axes in southwestern China deduced from microearthquake data[J]. Acta Geophysica Sinica,30(5):476–486 (in Chinese).
    张广伟,雷建设,梁姗姗,孙长青. 2014. 2014 年 8 月 3 日云南鲁甸MS6.5 级地震序列重定位与震源机制研究[J]. 地球物理学报,57(9):3018–3027.
    Zhang G W,Lei J S,Liang S S,Sun C Q. 2014. Relocation and focal mechanism solutions of the 3 August 2014 Ludian,Yunnan MS6.5 earthquake sequence[J]. Chinese Journal of Geophysics,57(9):3018–3027 (in Chinese).
    张家涛,张庆云. 1994. 石渠 5.1 级地震与德格 5.0 级地震灾害对比[J]. 高原地震,(3):63–69.
    Zhang J T,Zhang Q Y. 1994. Disaster contrast of M5.1 Shiqu and M5.0 Dege earthquakes[J]. Earthquake Research in Plateau,(3):63–69 (in Chinese).
    张培震,邓起东,张国民,马瑾,甘卫军,闵伟,毛凤英,王琪. 2003. 中国大陆的强震活动与活动地块[J]. 中国科学:D 辑,33(增刊1):12–20.
    Zhang P Z,Deng Q D,Zhang G M,Ma J,Gan W J,Min W,Mao F Y,Wang Q. 2003. Active tectonic blocks and strong earthquakes in the continent of China[J]. Science in China:Series D,46(S1):13–24.
    张勇,陈运泰,许力生,魏星,金明培,张森. 2015. 2014 年云南鲁甸 MW6.1 地震:一次共轭破裂地震[J]. 地球物理学报,58(1):153–162. doi: 10.6038/cjg20150113
    Zhang Y,Chen Y T,Xu L S,Wei X,Jin M P,Zhang S. 2015. The 2014 MW6.1 Ludian,Yunnan,earthquake:A complex conjugated ruptured earthquake[J]. Chinese Journal of Geophysics,58(1):153–162 (in Chinese).
    郑钰,杨建思. 2008. 双差算法的剖析及参数对定位的影响[J]. 地震地磁观测与研究,29(3):85–93. doi: 10.3969/j.issn.1003-3246.2008.03.016
    Zheng Y,Yang J S. 2008. Analysis of double-difference algorithm and the affect of its parameter in location[J]. Seismological and Geomagnetic Observation and Research,29(3):85–93 (in Chinese).
    朱艾斓,徐锡伟,周永胜,尹京苑,甘卫军,陈桂华. 2005. 川西地区小震重新定位及其活动构造意义[J]. 地球物理学报,48(3):629–636. doi: 10.3321/j.issn:0001-5733.2005.03.021
    Zhu A L,Xu X W,Zhou Y S,Yi J Y,Gan W J,Chen G H. 2005. Relocation of small earthquakes in western Sichuan,China and its implications for active tectonics[J]. Chinese Journal of Geophysics,48(3):629–636 (in Chinese).
    Angelier J. 1984. Tectonic analysis of fault slip data sets[J]. J Geophys Res:Solid Earth,89(B7):5835–5848. doi: 10.1029/JB089iB07p05835
    Atkinson G M,Greig D W,Yenier E. 2014. Estimation of moment magnitude (M) for small events (M<4) on local networks[J]. Seismol Res Lett,85(5):1116–1124. doi: 10.1785/0220130180
    Butcher A,Luckett R,Verdon J P,Verdon J P,Kendall J M,Baptie B,Wookey J. 2017. Local magnitude discrepancies for near‐event receivers:Implications for the UK traffic‐light scheme[J]. Bull Seismol Soc Am,107(2):532–541. doi: 10.1785/0120160225
    Fukuyama E,Ellsworth W L,Waldhauser F,Kubo A. 2003. Detailed fault structure of the 2000 western Tottori,Japan,earthquake sequence[J]. Bull Seismol Soc Am,93(4):1468–1478. doi: 10.1785/0120020123
    Hardebeck J L,Shearer P M. 2002. A new method for determining first-motion focal mechanisms[J]. Bull Seismol Soc Am,92(6):2264–2276. doi: 10.1785/0120010200
    Heck S L,Young C J,Brogan R. 2022. Comparing traditional and deep learning signal features for event detection in the Utah region[J]. Bull Seismol Soc Am,112(5):2344–2363. doi: 10.1785/0120210275
    Ji Y Q,Su S R,Liu Z H,Huang Q B. 2021. Assessment of tectonic activity based on the geomorphic indices in the middle reaches of the upstream of Jinsha River,China[J]. Geol J,56(8):3974–3991. doi: 10.1002/gj.4148
    Laske G, Masters G, Ma Z T, Pasyanos M. 2013. Update on CRUST1.0: A 1-degree global model of Earth’s crust[C]. Geophys Res Abstr, 15(15): 2658.
    Lei J S,Zhang G W,Xie F R,Li Y,Su Y J,Liu L F,Ma H H,Zhang J W. 2012. Relocation of the 10 March 2011 Yingjiang,China,earthquake sequence and its tectonic implications[J]. Earthq Sci,25(1):103–110. doi: 10.1007/s11589-012-0836-4
    Liu M,Zhang M,Zhu W Q,Ellsworth W L,Li H. 2020. Rapid characterization of the July 2019 Ridgecrest,California,earthquake sequence from raw seismic data using machine‐learning phase picker[J]. Geophys Res Lett,47(4):e2019GL086189.
    Luckett R,Ottemöller L,Butcher A,Baptie B. 2019. Extending local magnitude ML to short distances[J]. Geophys J Int,216(2):1145–1156. doi: 10.1093/gji/ggy484
    Martínez‐Garzón P,Kwiatek G,Ickrath M,Bohnhoff M. 2014. MSATSI:A MATLAB package for stress inversion combining solid classic methodology,a new simplified user‐handling,and a visualization tool[J]. Seismol Res Lett,85(4):896–904. doi: 10.1785/0220130189
    Park Y,Mousavi S M,Zhu W Q,Ellsworth W L,Beroza G C. 2020. Machine‐learning‐based analysis of the Guy‐Greenbrier,Arkansas earthquakes:A tale of two sequences[J]. Geophys Res Lett,47(6):e2020GL087032.
    Ross Z E,Hauksson E,Ben-Zion Y. 2017. Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone[J]. Sci Adv,3(3):e1601946. doi: 10.1126/sciadv.1601946
    Rubin A M. 2002. Aftershocks of microearthquakes as probes of the mechanics of rupture[J]. J Geophys Res: Sol Ea, 107(B7): ESE 3-1−ESE 3-16.
    Shen Z K,Lü J,Wang M,Bürgmann R. 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J]. J Geophys Res:Solid Earth,110(B11):B11409.
    Tözer B,Sandwell D T,Smith W H F,Olson C,Beale J R,Wessel P. 2019. Global bathymetry and topography at 15 arc sec:SRTM15+[J]. Earth Space Sci,6(10):1847–1864. doi: 10.1029/2019EA000658
    Uchide T,Shiina T,Imanishi K. 2022. Stress map of Japan:Detailed nationwide crustal stress field inferred from focal mechanism solutions of numerous microearthquakes[J]. J Geophys Res:Solid Earth,127(6):e2022JB024036.
    Waldhauser F. 2001. hypoDD: A Program to Compute Double-Difference Hypocenter Locations: US Geologic Survey Open File Report 01−113[R/OL]. [2022-10-20]. https://pubs.usgs.gov/of/2001/0113/.
    Wang M,Shen Z K. 2020. Present‐day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):e2019JB018774.
    Ye T,Chen X,Huang Q H,Zhao L,Zhang Y,Uyeshima M. 2020. Bifurcated crustal channel flow and seismogenic structures of intraplate earthquakes in western Yunnan,China as revealed by three-dimensional magnetotelluric imaging[J]. J Geophys Res:Solid Earth,125(9):e2019JB018991.
    Zhang M,Liu M,Feng T,Wang R J,Zhu W Q. 2022. LOC‐FLOW:An end‐to‐end machine learning‐based high‐precision earthquake location workflow[J]. Seismol Res Lett,93(5):2426–2438. doi: 10.1785/0220220019
    Zhang X,Zhang M,Tian X. 2021. Real‐time earthquake early warning with deep learning:Application to the 2016 M6.0 Central Apennines,Italy earthquake[J]. Geophys Res Lett,48(5):2020GL089394.
    Zhou Y J,Yue H,Fang L H,Zhou S Y,Zhao L,Ghosh A. 2022. An earthquake detection and location architecture for continuous seismograms:Phase picking,association,location,and matched filter (PALM)[J]. Seismol Res Lett,93(1):413–425.
    Zhu W Q,Beroza G C. 2019. PhaseNet:A deep-neural-network-based seismic arrival-time picking method[J]. Geophys J Int,216(1):261–273.
    Zoback M L. 1992. First- and second-order patterns of stress in the lithosphere:The World Stress Map Project[J]. J Geophys Res:Solid Earth,97(B8):11703–11728.

Catalog

    Article views (323) PDF downloads (157) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return