Citation: | Xu Y C,Zeng X W,Luo G F. 2024. Relocation and seismogenic structure of the 2021 Guyuan earthquake swarm. Acta Seismologica Sinica,46(5):767−786. DOI: 10.11939/jass.20230006 |
According to the Ningxia seismic network, Guyuan earthquake swarm activity occurred from June 11 to July 15, 2021. The 2021 Guyuan earthquake swarm had the most earthquake frequency ever recorded in historical swarm events of southern Ningxia, and hence attracted more attentions of relevant departments. Therefore, studying on the earthquake swarm provides fundamental data for the further comprehension of the seismic generation, evolution process of the earthquake swarm in this region and the investigation of the earthquake mechanism, thereby offering relevant supports for the earthquake tracking mission.
In this research, ML≥3.0 earthquakes of 2021 Guyuan earthquake swarm were determined using the methods of first arrival P phase location, and the earthquake swarm was also relocated by using multi-stage location and microearthquake matching location. Meanwhile, the focal mechanism solutions of the ML≥2.8 earthquakes from the swarm were calculated based on Snoke method and HASH method. Focal mechanism and centroid depth of the ML3.6 Guyuan earthquake on June 22, 2021, the largest in the swarm, was also determined by gCAP inversion method, and the central solutions of various focal mechanisms for the ML≥2.8 earthquakes were determined. Then the fault plane was fitted according to the relocation results and the seismogenic structure of Guyuan earthquake swarm was preliminarily analyzed. The results show that 901 microseismic events above ML0.0 were detected, which is about 2.6 times as much as those in the original catalog of the regional seismic network. The epicenters area is about 8 km long and 3 km wide, spreading in WNW direction predominately, with focal depths ranging from 8 km to 17 km, and the average depth of 13 km. ML≥2.8 earthquakes are mainly concentrated in the earthquake dense area with focal depth of 12−14 km. The focal mechanism of ML≥2.8 earthquakes show that all of them are strike-slip type, and most of them have a little thrust component, and the dominant azimuth of the P-axes is in nearly EW direction, which is basically consistent with the direction of the principal compressive stress of the local tectonic stress field in Liupanshan area. Combined with relocation, focal mechanism and fault plane fitting, it is suggested that the main seismogenic structure of Guyuan earthquake swarm may be controlled by two WNW-striking hidden faults with opposite dipping.The NE-dipping and SW-dipping faults form upward-branching flower structure, and the ML≥2.8 earthquakes are located at the intersection of faults with different dip, and all may have left-lateral strike-slip movement. As for the whole earthquake sequence, the NE-dipping fault activity is dominant, and the SW-dipping fault activity is secondary. According to previous studies, it is found that the Guyuan earthquake sequence is located in the low-velocity anomalous lens with about 11 km thickness at the bottom of the upper crust in Liupanshan area. The crust-mantle interaction deep fluid action and high Poisson’s ratio zone due to the upwelling of the upper mantle in the Liupanshan area are the possible seismogenic reasons for the formation of the low-velocity lens where Guyuan earthquake swarm is located. The preliminary analysis suggests that the seismogenic environment of Guyuan earthquake swarm may be principally related to the action of deep fluid. This research is of significance for the deep insight into the relationships between earthquake relocation, focal mechanism and seismogenic structure.
邓世广,蒋海昆. 2022. 2020年伽师MS6.4地震前震活动研究[J]. 地球物理学报,65(9):3322–3334. doi: 10.6038/cjg2022P0488
|
Deng S G,Jiang H K. 2022. Investigation of the foreshock activity of the 2020 MS6.4 Jiashi earthquake[J]. Chinese Journal of Geophysics,65(9):3322–3334 (in Chinese).
|
国家地震局地学断面编委会. 1992. 青海门源至福建宁德地学断面(1 ∶ 1 000 000)[M]. 北京:地震出版社:1−43.
|
Editorial Board of Geoscience Transect,State Seismological Bureau. 1992. The Geoscience Transection From Menyuan,Qinghai to Ningde,Fujian (1 ∶ 1 000 000)[M]. Beijing:Seismological Press:1−43 (in Chinese).
|
雷兴林,王志伟,马胜利,何昌荣. 2021. 关于2021年5月滇西漾濞MS6.4地震序列特征及成因的初步研究[J]. 地震学报,43(3):261–286. doi: 10.11939/jass.20210100
|
Lei X L,Wang Z W,Ma S L,He C R. 2021. A preliminary study on the characteristics and mechanism of the May 2021 MS6.4 Yangbi earthquake sequence,Yunnan,China[J]. Acta Seismologica Sinica,43(3):261–286 (in Chinese).
|
李姣,姜金钟,杨晶琼. 2020. 2017年漾濞MS4.8和MS5.1地震序列的微震检测及重定位[J]. 地震学报,42(5):527–542. doi: 10.11939/jass.20190161
|
Li J,Jiang J Z,Yang J Q. 2020. Microseismic detection and relocation of the 2017 MS4.8 and MS5.1 Yangbi earthquake sequence,Yunnan[J]. Acta Seismologica Sinica,42(5):527–542 (in Chinese).
|
李静,李营,陆丽娜,孙凤霞,谢超,崔月菊. 2017. 六盘山地区泉水地球化学特征[J]. 地震,37(1):61–72. doi: 10.3969/j.issn.1000-3274.2017.01.007
|
Li J,Li Y,Lu L N,Sun F X,Xie C,Cui Y J. 2017. Geochemistry of spring water in the Liupan mountain area[J]. Earthquake,37(1):61–72 (in Chinese).
|
李强,江在森,武艳强,赵静,魏文薪,刘晓霞. 2013. 海原—六盘山断裂带现今构造变形特征[J]. 大地测量与地球动力学,33(2):18–22.
|
Li Q,Jiang Z S,Wu Y Q,Zhao J,Wei W X,Liu X X. 2013. Present-day tectonic deformation characteristics of Haiyuan-Liupanshan fault zone[J]. Journal of Geodesy and Geodynamics,33(2):18–22 (in Chinese).
|
刘兴旺,袁道阳,史志刚,苏琦. 2015. 六盘山断裂带构造活动特征及流域盆地地貌响应[J]. 地震工程学报,37(1):168–174. doi: 10.3969/j.issn.1000-0844.2015.01.0168
|
Liu X W,Yuan D Y,Shi Z G,Su Q. 2015. Tectonic activity characteristics of the Liupanshan fault zone and geomorphologic response of drainage basin[J]. China Earthquake Engineering Journal,37(1):168–174 (in Chinese).
|
龙锋,祁玉萍,易桂喜,吴微微,王光明,赵小艳,彭关灵. 2021. 2021年5月21日云南漾濞MS6.4地震序列重新定位与发震构造分析[J]. 地球物理学报,64(8):2631–2646. doi: 10.6038/cjg2021O0526
|
Long F,Qi Y P,Yi G X,Wu W W,Wang G M,Zhao X Y,Peng G L. 2021. Relocation of the MS6.4 Yangbi earthquake sequence on May 21,2021 in Yunnan Province and its seismogenic structure analysis[J]. Chinese Journal of Geophysics,64(8):2631–2646 (in Chinese).
|
石富强,熊熊,王朋涛,苏利娜,单斌,朱琳,邵志刚. 2023. 2016年以来门源2次6级地震的应力触发及其对祁连—海原断裂带地震危险性的指示[J]. 地球物理学报,66(8):3230–3241.
|
Shi F Q,Xiong X,Wang P T,Su L N,Shan B,Zhu L,Shao Z G. 2023. Stress interaction between the two M>6 earthquake since 2016 and its implication on the seismic hazard along the Qilian-Haiyuan fault zone[J]. Chinese Journal of Geophysics,66(8):3230–3241 (in Chinese).
|
石富强,王芃,杨晨艺,王光明,刘洁,邵志刚,王庆林,贾若. 2024. 全球火山活动时空分布特征及其对强震活动趋势的指示[J]. 地震学报,46(2):273–291.
|
Shi F Q,Wang P,Yang C Y,Wang G M,Liu J,Shao Z G,Wang Q L,Jia R. 2024. Spatio-temporal distribution characteristics of the worldwide volcano activity and their implication to the strong earthquake trends[J]. Acta Seismologica Sinica,46(2):273–291 (in Chinese).
|
施炜,张岳桥,马寅生,刘刚,武丽. 2006. 六盘山盆地形成和改造历史及构造应力场演化[J]. 中国地质,33(5):1066–1074. doi: 10.3969/j.issn.1000-3657.2006.05.016
|
Shi W,Zhang Y Q,Ma Y S,Liu G,Wu L. 2006. Formation and modification history of the Liupanshan basin on the southwestern margin of the Ordos block and tectonic stress field evolution[J]. Geology in China,33(5):1066–1074 (in Chinese).
|
司学芸,李英,姚琳. 2011. 固原硝口温泉CO2气体异常与映震效应[J]. 地震地磁观测与研究,32(3):88–94. doi: 10.3969/j.issn.1003-3246.2011.03.015
|
Si X Y,Li Y,Yao L. 2011. Reflecting earthquake effectivity of the CO2 anomalies at Xiaokou hot spring in Guyuan county[J]. Seismological and Geomagnetic Observation and Research,32(3):88–94 (in Chinese).
|
万永革,沈正康,刁桂苓,王福昌,胡新亮,盛书中. 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用[J]. 地球物理学报,51(3):793–804. doi: 10.3321/j.issn:0001-5733.2008.03.020
|
Wan Y G,Shen Z K,Diao G L,Wang F C,Hu X L,Sheng S Z. 2008. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequence[J]. Chinese Journal of Geophysics,51(3):793–804 (in Chinese).
|
万永革. 2019. 同一地震多个震源机制中心解的确定[J]. 地球物理学报,62(12):4718–4728. doi: 10.6038/cjg2019M0553
|
Wan Y G. 2019. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics,62(12):4718–4728 (in Chinese).
|
王椿镛,林中洋,陈学波. 1995. 青海门源—福建宁德地学断面综合地球物理研究[J]. 地球物理学报,38(5):590–598. doi: 10.3321/j.issn:0001-5733.1995.05.005
|
Wang C Y,Lin Z Y,Chen X B. 1995. Comprehensive study of geophysics on geoscience transect from Menyuan,Qinghai Province,to Ningde,Fujian Province,China[J]. Acta Geophysica Sinica,38(5):590–598 (in Chinese).
|
谢富仁,舒塞兵,窦素芹,张世民,崔效锋. 2000. 海原、六盘山断裂带至银川断陷第四纪构造应力场分析[J]. 地震地质,22(2):139–146. doi: 10.3969/j.issn.0253-4967.2000.02.006
|
Xie F R,Shu S B,Dou S Q,Zhang S M,Cui X F. 2000. Quaternary tectonic stress field in the region of Haiyuan-Liupanshan fault zone to Yinchuan fault depression[J]. Seismology and Geology,22(2):139–146 (in Chinese).
|
许英才,王琼,曾宪伟,马禾青,许文俊,金涛. 2018. 鄂尔多斯地块西缘莫霍面起伏及泊松比分布[J]. 地震学报,40(5):563–581.
|
Xu Y C,Wang Q,Zeng X W,Ma H Q,Xu W J,Jin T. 2018. Moho depth and Poisson’s ratio distribution in the western edge of Ordos block[J]. Acta Seismologica Sinica,40(5):563–581 (in Chinese).
|
许英才,高原,石玉涛,王琼,陈安国. 2019. 鄂尔多斯块体西缘地壳介质各向异性:从银川地堑到海原断裂带[J]. 地球物理学报,62(11):4239–4258. doi: 10.6038/cjg2019M0309
|
Xu Y C,Gao Y,Shi Y T,Wang Q,Chen A G. 2019. Crustal seismic anisotropy in the west margin of the Ordos block:From the Yinchuan graben to the Haiyuan fault zone[J]. Chinese Journal of Geophysics,62(11):4239–4258 (in Chinese).
|
许英才,郭祥云,冯丽丽. 2022a. 2022年1月8日青海门源MS6.9地震序列重定位和震源机制解研究[J]. 地震学报,44(2):195–210.
|
Xu Y C,Guo X Y,Feng L L. 2022a. Relocation and focal mechanism solutions of the MS6.9 Menyuan earthquake sequence on January 8,2022 in Qinghai Province[J]. Acta Seismologica Sinica,44(2):195–210 (in Chinese).
|
许英才,郭祥云,曾宪伟. 2022b. 三种方法分析2017年宁夏固原MS4.6地震的震源机制解[J]. 地震工程学报,44(5):1136–1150.
|
Xu Y C,Guo X Y,Zeng X W. 2022b. Focal mechanism solution of Guyuan,Ningxia MS4.6 earthquake in 2017 determined by three methods[J]. China Earthquake Engineering Journal,44(5):1136–1150 (in Chinese).
|
许英才,曾宪伟. 2022. 2021年11月18日宁夏灵武MS4.0地震震源参数研究[J]. 地球与行星物理论评,53(2):214–227.
|
Xu Y C,Zeng X W. 2022. Source parameters of the MS4.0 Lingwu earthquake on November 18th,2021[J]. Reviews of Geophysics and Planetary Physics,53(2):214–227 (in Chinese).
|
杨明芝,马禾青,廖玉华. 2007. 宁夏地震活动与研究[M]. 北京:地震出版社:41−47.
|
Yang M Z,Ma H Q,Liao Y H. 2007. Ningxia Earthquake Activity and Research[M]. Beijing:Seismological Press:41−47 (in Chinese).
|
易桂喜,龙锋,梁明剑,赵敏,王思维,宫悦,乔慧珍,苏金蓉. 2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析[J]. 地球物理学报,62(9):3432–3447. doi: 10.6038/cjg2019N0297
|
Yi G X,Long F,Liang M J,Zhao M,Wang S W,Gong Y,Qiao H Z,Su J R. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence[J]. Chinese Journal of Geophysics,62(9):3432–3447 (in Chinese).
|
曾宪伟,莘海亮,马翀之,许晓庆. 2017a. 利用初至P震相测定石嘴山ML4.4地震序列的震源深度[J]. 地震学报,39(1):13–22.
|
Zeng X W,Xin H L,Ma C Z,Xu X Q. 2017a. Calculation of focal depths of Shizuishan ML4.4 earthquake sequence by using the first arrival P phases[J]. Acta Seismologica Sinica,39(1):13–22 (in Chinese).
|
曾宪伟,姚华建,莘海亮. 2017b. 宁夏石嘴山震群的微震匹配定位及其发震构造[J]. 地震地质,39(4):735–753.
|
Zeng X W,Yao H J,Xin H L. 2017b. Match and locate for small event detection of Ningxia Shizuishan earthquake swarm and investigation of its seismogenic fault[J]. Seismology and Geology,39(4):735–753 (in Chinese).
|
曾宪伟,闻学泽,龙锋. 2019. 由初至P震相重新定位2017年九寨沟地震序列的主震与ML3.0余震并分析发震构造[J]. 地球物理学报,62(12):4604–4619. doi: 10.6038/cjg2019M0604
|
Zeng X W,Wen X Z,Long F. 2019. Relocating the mainshock and ML≥3.0 aftershocks of the 2017 Jiuzhaigou sequence using first arriving P-phase only and reanalyzing the seismogenic structure[J]. Chinese Journal of Geophysics,62(12):4604–4619 (in Chinese).
|
张培震. 1999. 中国大陆岩石圈最新构造变动与地震灾害[J]. 第四纪研究,19(5):404–413. doi: 10.3321/j.issn:1001-7410.1999.05.003
|
Zhang P Z. 1999. Late Quaternary tectonic deformation and earthquake hazard in continental China[J]. Quaternary Sciences,19(5):404–413 (in Chinese).
|
张晖,谭毅培,马婷,翟浩,张珂,李娟. 2021. 2020年和林格尔ML4.5地震微震匹配定位及发震构造探讨[J]. 中国地震,37(2):430–441. doi: 10.3969/j.issn.1001-4683.2021.02.015
|
Zhang H,Tan Y P,Ma T,Zhai H,Zhang K,Li J. 2021. Microseismic matching location of the 2020 Horiger ML4.5 earthquake sequence and the seismogenic structure analysis[J]. Earthquake Research in China,37(2):430–441 (in Chinese).
|
赵荣国. 1998. 三种震群活动[J]. 国际地震动态,(9):13–19.
|
Zhao R G. 1998. Three types of swarm activities[J]. Recent Developments in World Seismology,(9):13–19 (in Chinese).
|
中国地震局. 1998. 地震现场工作大纲和技术指南[M]. 北京:地震出版社:15−40.
|
China Earthquake Administration. 1998. Outlines and Technology Guide of On-the-Spot Work on Earthquake[M]. Beijing:Seismological Press:15−40 (in Chinese).
|
Chang L J,Ding Z F,Wang C Y,Flesch L M. 2017. Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan Plateau using GPS and shear-wave splitting data[J]. Tectonophysics,699:93–101. doi: 10.1016/j.tecto.2017.01.025
|
Crotwell H P,Owens T J,Ritsema J. 1999. The TauP Toolkit:Flexible seismic travel-time and ray-path utilities[J]. Seismol Res Lett,70(2):154–160. doi: 10.1785/gssrl.70.2.154
|
Hardebeck J L,Shearer P M. 2002. A new method for determining first-motion focal mechanisms[J]. Bull Seismol Soc Am,92(6):2264–2276. doi: 10.1785/0120010200
|
Hardebeck J L,Shearer P M. 2003. Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes[J]. Bull Seismol Soc Am,93(6):2434–2444. doi: 10.1785/0120020236
|
Ji S C,Wang Q,Salisbury M H. 2009. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson’s ratio[J]. Tectonophysics,463(1/2/3/4):15–30.
|
Kissling E. 1988. Geotomography with local earthquake data[J]. Rev Geophys,26(4):659–698. doi: 10.1029/RG026i004p00659
|
Kissling E,Ellsworth W L,Eberhart-Phillips D,Kradolfer U. 1994. Initial reference models in local earthquake tomography[J]. J Geophys Res:Solid Earth,99(B10):19635–19646. doi: 10.1029/93JB03138
|
Klein F W. 2002. User’s Guide to HYPOINVERSE-2000:A Fortran Program to Solve for Earthquake Locations and Magnitudes[R]. Menlo Park:U.S. Geological Survey:1−121.
|
Lei X L,Xie C D,Fu B H. 2011. Remotely triggered seismicity in Yunnan,southwestern China,following the 2004 MW9.3 Sumatra earthquake[J]. J Geophys Res:Solid Earth,116(B8):B08303.
|
Li Y C,Qu C Y,Shan X J,Song X G,Zhang G H,Gan W J,Wen S Y,Wang Z J. 2015. Deformation of the Haiyuan-Liupanshan fault zone inferred from the denser GPS observations[J]. Earthq Sci,28(5/6):319–331.
|
Long F,Wen X Z,Ruan X,Zhao M,Yi G X. 2015. A more accurate relocation of the 2013 MS7.0 Lushan,Sichuan,China,earthquake sequence,and the seismogenic structure analysis[J]. J Seismol,19(3):653–665. doi: 10.1007/s10950-015-9485-0
|
Luo G F,Ding F H,Xu Y C,Luo H Z,Li W J. 2023. Strain fields of MS>6.0 earthquakes in Menyuan,Qinghai,China[J]. Frontier in Earth Science,11:1152348. doi: 10.3389/feart.2023.1152348
|
Peng Z G,Zhao P. 2009. Migration of early aftershocks following the 2004 Parkfield earthquake[J]. Nat Geosci,2(12):877–881. doi: 10.1038/ngeo697
|
Shi Y T,Gao Y,Shen X Z,Liu K H. 2020. Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan Plateau and tectonic implications of the Haiyuan fault[J]. Tectonophysics,774:228274. doi: 10.1016/j.tecto.2019.228274
|
Snoke J A,Munsey J W,Teague A C. 1984. A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data[J]. Earthq Notes,55(3):15.
|
Snoke J A. 2003. FOCMEC:Focal mechanism determinations[J]. Int Geophys,81:1629–1630.
|
Waldhauser F,Ellsworth W L. 2000. A double-difference earthquake location algorithm:Method and application to the northern Hayward fault,California[J]. Bull Seismol Soc Am,90(6):1353–1368. doi: 10.1785/0120000006
|
Wan Y G. 2010. Contemporary tectonic stress field in China[J]. Earthq Sci,23(4):377–386. doi: 10.1007/s11589-010-0735-5
|
Wessel P,Luis J F,Uieda L,Scharroo R,Wobbe F,Smith W H F,Tian D D. 2019. The Generic Mapping Tools Version 6[J]. Geochem Geophys Geosyst,20(11):5556–5564.
|
Zhang M,Wen L X. 2015a. An effective method for small event detection:Match and locate (M&L)[J]. Geophys J Int,200(3):1523–1537. doi: 10.1093/gji/ggu466
|
Zhang M,Wen L X. 2015b. Seismological evidence for a low-yield nuclear test on 12 May 2010 in North Korea[J]. Seismol Res Lett,86(1):138–145. doi: 10.1785/02201401170
|
Zhang M,Wen L X. 2015c. Earthquake characteristics before eruptions of Japan’s Ontake volcano in 2007 and 2014[J]. Geophys Res Lett,42(17):6982–6988. doi: 10.1002/2015GL065165
|
Zhang X,Sanderson D J. 1996. Numerical modelling of the effects of fault slip on fluid flow around extensional faults[J]. J Struct Geol,18(1):109–119. doi: 10.1016/0191-8141(95)00086-S
|
Zhu L P,Helmberger D V. 1996. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641. doi: 10.1785/BSSA0860051634
|
Zhu L P,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys J Int,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x
|
Zhu L P,Ben-Zion Y. 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data[J]. Geophys J Int,194(2):839–843. doi: 10.1093/gji/ggt137
|
1. |
刘中宪,孟思博,李文轩,赵嘉玮,黄振恩. 考虑岩土参数随机性的三维沉积盆地地震动高效模拟方法. 岩土工程学报. 2024(03): 529-538 .
![]() |