Citation: | Xu Y C. 2023. Moment tensor inversion and source fault determination of the 2023 MS6.1 Shaya earthquake and the 2012 MS6.0 Luopu earthquake. Acta Seismologica Sinica,45(5):763−780. DOI: 10.11939/jass.20230013 |
On January 30, 2023, a MS6.1 earthquake occurred in Xinjiang Shaya in the northern Tarim basin. The MS6.0 Luopu earthquake on March 9, 2012 was the latest strong earthquake near the Shaya epicenter. These two earthquakes both occurred in the Bachu uplift to Awati depression tectonic belt. The moment tensor solutions of 2023 MS6.1 Shaya earthquake and 2012 MS6.0 Luopu earthquake were determined by gCAP method. The relationship between focal mechanisms of Shaya and Luopu earthquakes and regional stress regime was analyzed. Finally, the source faults were preliminarily determined. Moment tensor inversion results indicate that the 2023 MS6.1 Shaya earthquake is a strike-slip event with strike 251°, dip 68°, rake 6° for nodal plane Ⅰ and 159°, 84°, 158° for nodal plane Ⅱ, respectively, the Paxis azimuth is 207° and plunge angle is 11°, and that of the 2012 MS6.0 Luopu earthquake is a thrust event with strike 274°, dip 61°, rake 67° for nodal plane Ⅰ and 135°, 36°, 125° for nodal plane Ⅱ, respectively, the P-axis azimuth is 20° and plunge angle is 13°. The P-axis azimuths are both consistant with the principal compressive stress direction in the NNE direction of the tectonic stress field in the Bachu uplift to Awati depression belt. The results of the full moment tensor solutions show that for Shaya earthquake the seismic moment M0 is 7.798×1017 N·m while the moment tensor solutions Mrr, Mtt, Mpp, Mrt, Mrp, Mtp are −0.081, −0.821, 0.342, 0.064, −0.358, 0.685, and for Luopu earthquake the seismic moment M0 is 9.076×1017 N·m while the moment tensor solutions Mrr, Mtt, Mpp, Mrt, Mrp, Mtp are 0.517, −0.910, −0.353, −0.491, −0.180, 0.341, and that both Shaya and Luopu earthquakes belong to typical natural tectonic seismic events. The relationship between the focal mechanisms and the stress regime of the two earthquakes reveals that the relative shear stress of the focal mechanism plane is almost the maximum, and the difference between the rake of the focal mechanism and that of the shear stress is small, indicating that the two earthquakes almost both occurred at the optimal release plane of the tectonic stress field, and are mainly affected by the shear stress. Combined with the previous studies, it is speculated that the nodal plane Ⅱ of the focal mechanism solution of the two earthquakes is the possible seismogenic rupture plane. The seismogenic structure of the 2023 Shaya earthquake may be a high-dip transition tear fault on the NW strike above the 30 km deep detachment tectonic belt of the middle crust of Awati depression, and the earthquake dislocation mode may be right-lateral strike-slip. It belongs to the tearing between NW trending translational fault blocks caused by deep subduction from the northern Tarim Craton to the southern Tianshan tectonic belt. The 2012 Luopu earthquake may be related to the NW striking and SW dipping seismogenic fault generated by the overthrust of the hanging wall of Bachu uplift which is in the NE direction above the footwall of Awati depression.
曹厚臻,何丽娟,张林友. 2019. 塔里木克拉通形成以来的背景热史研究[J]. 地球物理学报,62(1):236–247.
|
Cao H Z,He L J,Zhang L Y. 2019. Inversion of background thermal history since the formation of the Tarim Craton[J]. Chinese Journal of Geophysics,62(1):236–247 (in Chinese).
|
陈运泰,刘瑞丰. 2021. 用P波初动资料确定地震震源机制教程(三)[J]. 地震地磁观测与研究,42(5):1–11.
|
Chen Y T,Liu R F. 2021. The use of the first P motion data for earthquake focal mechanism determination of:A tutorial (3)[J]. Seismological and Geomagnetic Observation and Research,42(5):1–11 (in Chinese).
|
防灾科技学院, Seismology小组. 2023. 2023年1月30日新疆阿克苏6.1级地震的震源机制中心解及对震中周围产生的变形场[EB/OL]. [2023-02-02]. https://mp.weixin.qq.com/s/UkfB7AuKlcymD5u9bzNQRQ.
|
Institute of Disaster Prevention, Seismology Group. 2023. The central focal mechanism solution and deformation field around the epicenter of the M6.1 Aksu earthquake on January 30, 2023 in Xinjiang[EB/OL]. [2023-02-02]. https://mp.weixin.qq.com/s/UkfB7AuKlcymD5u9bzNQRQ (in Chinese).
|
冯英,史勇军,徐衍刚,赖爱京,潘振生,蒋志英. 2012. 2012年3月9日新疆洛浦6.0级地震前前兆异常初步分析[J]. 内陆地震,26(4):316–323.
|
Feng Y,Shi Y J,Xu Y G,Lai A J,Pan Z S,Jiang Z Y. 2012. Primary analysis of precursor anomalies before Luopu earthquake with MS6.0[J]. Inland Earthquake,26(4):316–323 (in Chinese).
|
何文渊,李江海,钱祥麟,张臣. 2000. 塔里木盆地巴楚断隆中新生代的构造演化[J]. 北京大学学报(自然科学版),36(4):539–546.
|
He W Y,Li J H,Qian X L,Zhang C. 2000. The Meso-Cenozoic evolution of Bachu fault-uplift in Tarim basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,36(4):539–546 (in Chinese).
|
李圣强,陈棋福,赵里,朱露培,高金哲,李闽峰,刘桂平,王斌. 2013. 2011年5月中国东北MW5.7深震的非同寻常震源机制:区域波形反演与成因探讨[J]. 地球物理学报,56(9):2959–2970.
|
Li S Q,Chen Q F,Zhao L,Zhu L P,Gao J Z,Li M F,Liu G P,Wang B. 2013. Anomalous focal mechanism of the May 2011 MW5.7 deep earthquake in northeastern China:Regional waveform inversion and possible mechanism[J]. Chinese Journal of Geophysics,56(9):2959–2970 (in Chinese).
|
李涛,王宗秀. 2005. 塔里木盆地及邻区岩石圈拆离解耦与盆山格局关系的天然地震分析[J]. 地学前缘,12(3):125–136.
|
Li T,Wang Z X. 2005. The lithospheric decoupling of the Tarim basin and surrounding orogenic belts and its relationship with basin-mountain patterns from the analysis of natural earthquake[J]. Earth Science Frontiers,12(3):125–136 (in Chinese).
|
李涛,王宗秀. 2006. 塔里木地块北部横向构造及断条模式[J]. 中国地质,33(1):14–27.
|
Li T,Wang Z X. 2006. Transverse structure and model of fault slivers in the northern part of the Tarim block[J]. Geology in China,33(1):14–27 (in Chinese).
|
李艳永,唐明帅,乌尼尔. 2019. 新疆北天山中东段呼图壁地区震源深度的重新测定[J]. 震灾防御技术,14(2):352–362.
|
Li Y Y,Tang M S,Wu N E. 2019. Redetermination of focal depth in Hutubi region of the middle and east of north Tianshan in Xinjiang[J]. Technology for Earthquake Disaster Prevention,14(2):352–362 (in Chinese).
|
梁姗姗,邹立晔,刘艳琼. 2023. 2022年10月—2023年2月中国大陆地区M≥4.0地震震源机制解测定[J]. 地震科学进展,53(4):185–191.
|
Liang S S,Zou L Y,Liu Y Q. 2023. Determination of focal mechanism solutions of the earthquakes with M≥4.0 occurred in the mainland of China during October 2022 to February 2023[J]. Progress in Earthquake Sciences,53(4):185–191 (in Chinese).
|
刘志宏,林东成,王文革,张立国,高军义,任林伟,刘安英. 2001. 塔里木盆地吐木休克断裂带的研究[J]. 长春科技大学学报,31(3):219–223.
|
Liu Z H,Lin D C,Wang W G,Zhang L G,Gao J Y,Ren L W,Liu A Y. 2001. Study on Tumuxiuke fault belt in Tarim basin[J]. Journal of Changchun University of Science and Technology,31(3):219–223 (in Chinese).
|
罗艳,曾祥方,倪四道. 2013. 震源深度测定方法研究进展[J]. 地球物理学进展,28(5):2309–2321.
|
Luo Y,Zeng X F,Ni S D. 2013. Progress on the determination of focal depth[J]. Progress in Geophysics,28(5):2309–2321 (in Chinese).
|
孟庆强,朱东亚,解启来,金之钧. 2011. 塔中和巴楚地区深部流体活动控制因素及有利区预测[J]. 石油实验地质,33(6):597–601. doi: 10.3969/j.issn.1001-6112.2011.06.008
|
Meng Q Q,Zhu D Y,Xie Q L,Jin Z J. 2011. Controlling factors for deep fluid activity and prediction of positive effect area in middle Tarim and Bachu regions[J]. Petroleum Geology and Experiment,33(6):597–601 (in Chinese).
|
瞿辰,杨文采,于常青. 2013. 塔里木盆地地震波速扰动及泊松比成像[J]. 地学前缘,20(5):196–206.
|
Qu C,Yang W C,Yu C Q. 2013a. Seismic velocity tomography and Poisson’s ratio imaging in Tarim basin[J]. Earth Science Frontiers,20(5):196–206 (in Chinese).
|
邵学钟,张家茹. 1994. 塔里木盆地深部构造的地震转换波探测结果[J]. 地球物理学报,37(6):836.
|
Shao X Z,Zhang J R. 1994. Preliminary results of study of deep structures in Tarim basin by the method of converted waves of earthquakes[J]. Acta Geophysica Sinica,37(6):836 (in Chinese).
|
万永革. 2019. 同一地震多个震源机制中心解的确定[J]. 地球物理学报,62(12):4718–4728.
|
Wan Y G. 2019. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics,62(12):4718–4728 (in Chinese).
|
万永革. 2020. 震源机制与应力体系关系模拟研究[J]. 地球物理学报,63(6):2281–2296.
|
Wan Y G. 2020. Simulation on relationship between stress regimes and focal mechanisms of earthquakes[J]. Chinese Journal of Geophysics,63(6):2281–2296 (in Chinese).
|
王良书,李成,杨春. 1996. 塔里木盆地岩石层热结构特征[J]. 地球物理学报,39(6):794–803.
|
Wang L S,Li C,Yang C. 1996. The lithospheric thermal structure beneath Tarim basin,western China[J]. Acta Geophysica Sinica,39(6):794–803 (in Chinese).
|
韦生吉,倪四道,崇加军,郑勇,陈颙. 2009. 2003年8月16日赤峰地震:一个可能发生在下地壳的地震?[J]. 地球物理学报,52(1):111–119.
|
Wei S J,Ni S D,Chong J J,Zheng Y,Chen Y. 2009. The 16 August 2003 Chifeng earthquake:Is it a lower crust earthquake?[J]. Chinese Journal of Geophysics,52(1):111–119 (in Chinese).
|
许英才,曾宪伟. 2022. 2021年11月18日宁夏灵武MS4.0地震震源参数研究[J]. 地球与行星物理论评,53(2):214–227.
|
Xu Y C,Zeng X W. 2022. Source parameters of the MS4.0 Lingwu earthquake on November 18th,2021[J]. Reviews of Geophysics and Planetary Physics,53(2):214–227 (in Chinese).
|
易桂喜,赵敏,龙锋,梁明剑,王明明,周荣军,王思维. 2021. 2021年9月16日四川泸县MS6.0地震序列特征及孕震构造环境[J]. 地球物理学报,64(12):4449–4461. doi: 10.6038/cjg2021O0533
|
Yi G X,Zhao M,Long F,Liang M J,Wang M M,Zhou R J,Wang S W. 2021. Characteristics of the seismic sequence and seismogenic environment of the MS6.0 Sichuan Luxian earthquake on September 16,2021[J]. Chinese Journal of Geophysics,64(12):4449–4461 (in Chinese).
|
殷伟伟,张蕙. 2021. 利用震源机制判别山西地区地震事件类型[J]. 大地测量与地球动力学,41(8):846–852.
|
Yin W W,Zhang H. 2021. Using focal mechanism to distinguish types of earthquake events in Shanxi[J]. Journal of Geodesy and Geodynamics,41(8):846–852 (in Chinese).
|
张广伟,雷建设. 2015. 2015尼泊尔MS8.1地震中等余震震源机制研究[J]. 地球物理学报,58(11):4298–4304. doi: 10.6038/cjg20151134
|
Zhang G W,Lei J S. 2015. Focal mechanism solutions of moderate-sized aftershocks of the 2015 MS8.1 Nepal earthquake[J]. Chinese Journal of Geophysics,58(11):4298–4304 (in Chinese).
|
中国地震局地球物理研究所. 2023. 2023年1月30日新疆阿克苏沙雅县6.1级地震科技支撑简报[EB/OL]. [2023−01−30].https://www.cea-igp.ac.cn/kydt/279809.html.
|
Institute of Geophysics, China Earthquake Administration. 2023. Science and technology support for the M6.1 earthquake in Shaya County, Aksu region in Xinjiang on January 30, 2023[EB/OL]. [2023−01−30]. https://www.cea-igp.ac.cn/kydt/279809.html (in Chinese).
|
中国地震台网中心. 2023. 中国地震台网地震目录[DB/OL]. [2023−01−30]. https://news.ceic.ac.cn/.
|
China Earthquake Networks Center. 2023. Earthquake catalog of CENC[DB/OL]. [2023−01−30]. https://news.ceic.ac.cn/ (in Chinese ).
|
周慧,陈永权,李洪辉,李保华,黄理力,刘亚雷,龚洪林,文磊. 2021. 塔里木盆地巴楚隆起北缘的吐木休克断裂与巴东断裂[J]. 地质科学,56(1):1–18. doi: 10.12017/dzkx.2021.001
|
Zhou H,Chen Y Q,Li H H,Li B H,Huang L L,Liu Y L,Gong H L,Wen L. 2021. The Tumuxiuke and Badong faults on the northern boundary of the Bachu rise,Tarim basin[J]. Chinese Journal of Geology,56(1):1–18 (in Chinese).
|
周铭. 2014. 塔里木及其邻域三维S波速度结构及径向各向异性研究[D]. 北京: 中国地质大学(北京): 52–55.
|
Zhou M. 2014. Three-Dimensional S Wave Velocity Structure and Radial Anisotropy of the Tarim Basin and Its Surrounding Regions[D]. Beijing: China University of Geosciences (Beijing): 52–55 (in Chinese).
|
朱治国,李桂荣. 2013. 应用GPS连续观测和流动重力资料分析新疆洛浦MS6.0地震的前兆特征[J]. 内陆地震,27(3):222–228. doi: 10.3969/j.issn.1001-8956.2013.03.004
|
Zhu Z G,Li G R. 2013. Study on precursory features of Luopu MS6.0 earthquake based on GPS continuous observation data and mobile gravity data[J]. Inland Earthquake,27(3):222–228 (in Chinese).
|
Efron B,Tibshirani R. 1986. Bootstrap methods for standard errors,confidence intervals,and other measures of statistical accuracy[J]. Statist Sci,1(1):54–75.
|
European-Mediterranean Seismological Centre. 2023. Moment tensors[DB/OL]. [2022-02-01]. https://www.emsc-csem.org/Earthquake/tensors.php.
|
Mori J. 1991. Estimates of velocity structure and source depth using multiple P waves from aftershocks of the 1987 Elmore Ranch and Superstition Hills,California,earthquakes[J]. Bull Seismol Soc Am,81(2):508–523. doi: 10.1785/BSSA0810020508
|
Song Z H,Tang L J,Liu C. 2021. Variations of thick-skinned deformation along Tumuxiuke thrust in Bachu uplift of Tarim basin,northwestern China[J]. J Struct Geol,144:104277. doi: 10.1016/j.jsg.2021.104277
|
Stein S,Wiens D A. 1986. Depth determination for shallow teleseismic earthquakes:Methods and results[J]. Rev Geophys,24(4):806–832. doi: 10.1029/RG024i004p00806
|
USGS. 2023. M5.7: 110 km ESE of Aral, China[EB/OL]. [2022-02-01]. https://earthquake.usgs.gov/earthquakes/eventpage/us6000jk82/executive.
|
Wan Y G. 2010. Contemporary tectonic stress field in China[J]. Earthquake Science,23(4):377–386. doi: 10.1007/s11589-010-0735-5
|
Xin H L,Zhang H J,Kang M,He R Z,Gao L,Gao J. 2019. High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography[J]. Seismol Res Lett,90(1):229–241. doi: 10.1785/0220180209
|
Zhao J M,Cheng H G,Pei S P,Liu H B,Zhang J S,Liu B F. 2008. Deep structure at northern margin of Tarim basin[J]. China Science Bulletin,53(10):1544–1554.
|
Zhu L P,Helmberger D V. 1996a. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641. doi: 10.1785/BSSA0860051634
|
Zhu L P,Helmberger D V. 1996b. Intermediate depth earthquakes beneath the India-Tibet collision zone[J]. Geophys Res Lett,23(5):435–438. doi: 10.1029/96GL00385
|
Zhu L P,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys J Int,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x
|
Zhu L P,Ben-Zion Y. 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data[J]. Geophys J Int,194(2):839–843. doi: 10.1093/gji/ggt137
|
1. |
王雅如,王昀,江勇勇. 基于改进Unet的地震勘探工区建筑物分割方法研究. 现代电子技术. 2025(03): 135-140 .
![]() | |
2. |
齐文文,许冲,乔月霞. 基于谷歌地球引擎和Sentinel-2时序数据的海地多云地区地震滑坡识别. 地震学报. 2024(04): 633-648 .
![]() | |
3. |
韩军良,韩留生,穆豪祥,张至一,郭宇晨,刘晓亚. 面向对象的土地荒漠化信息提取研究. 测绘科学. 2023(04): 149-160 .
![]() | |
4. |
罗嘉琦,帅向华,李继赓. 基于深度学习的倾斜摄影建筑物表面损毁信息提取. 中国地震. 2023(02): 271-281 .
![]() | |
5. |
雷雅婷,沈占锋,许泽宇,王浩宇,李硕,焦淑慧. 基于D-LinkNet的2014年云南鲁甸M_S6.5地震建筑物损毁与重建评估. 地震研究. 2022(04): 608-616 .
![]() | |
6. |
杜浩国,张方浩,卢永坤,林旭川,邓树荣,曹彦波. 基于多源遥感影像的2021年云南漾濞M_S6.4地震灾区建筑物信息识别与震害分析. 地震研究. 2021(03): 490-498 .
![]() |