Song H B. 2023. New progress in seismic oceanography. Acta Seismologica Sinica45(3):376−391. DOI: 10.11939/jass.20230014
Citation: Song H B. 2023. New progress in seismic oceanography. Acta Seismologica Sinica45(3):376−391. DOI: 10.11939/jass.20230014

New progress in seismic oceanography

More Information
  • Received Date: February 16, 2023
  • Revised Date: April 06, 2023
  • Available Online: May 18, 2023
  • Published Date: May 14, 2023
  • Ocean multi-scale dynamic processes are the focus of current oceanography research. Seismic oceanography can obtain high-quality data with a resolution of 10 m on hundreds of km section, so it can analyze the sub-mesoscale dynamic phenomenon at the edge of an eddy (such as the beautiful spiral arm found in the Arctic Ocean seismic section study) and the vertical amplitude structure of the internal solitary waves, and can combine the internal solitary wave waveform change with the mixing parameter distribution. This paper reviews the new insights and advances of these studies. At the same time, the common offset section prestack migration method makes full use of the multiple coverage characteristics of multi-channel seismic method to obtain the temporal variation of seismic images, thus adding a key tool for seismic oceanography to reveal the spatio-temporal evolution of the ocean internal structure. Therefore, the new space-time perspective provided by seismic oceanography will play an important role in the study of ocean multi-scale dynamic processes.
  • 拜阳, 宋海斌, 关永贤, 杨胜雄, 刘伯然, 陈江欣, 耿明会. 2015. 利用地震海洋学方法研究南海东北部东沙海域内孤立波的结构特征[J]. 科学通报, 60(10): 944-951.
    Bai Y, Song H B, Guan Y X, Yang S X, Liu B R, Chen J X, Geng M H. 2015. Nonlinear internal solitary waves in the northeast South China Sea near Dongsha Atoll using seismic oceanography[J]. Chinese Science Bulletin, 60(10): 944-951 (in Chinese). doi: 10.1360/N972014-00911
    范文豪, 宋海斌, 龚屹, 张锟, 孙绍箐. 2021. 中美洲海域第二模态内孤立波的地震海洋学研究[J]. 地球物理学报, 64(1): 195-208.
    Fan W H, Song H B, Gong Y, Zhang K, Sun S Q. 2021. Seismic oceanography study of mode-2 internal solitary waves offshore Central America[J]. Chinese Journal of Geophysics (in Chinese), 64(1): 195-208 (in Chinese).
    邝芸艳, 王亚龙, 宋海斌, 关永贤, 范文豪, 龚屹, 张锟. 2021. 南海东北部内孤立波包的地震海洋学和遥感研究[J]. 地球物理学报, 64(2): 597-611.
    Kuang Y Y, Wang Y L, Song H B, Guan Y Y, Fan W H, Gong Y, Zhang K. 2021. Study of internal solitary wave packets in the northeastern South China Sea based on seismic oceanography and remote sensing[J]. Chinese Journal of Geophysics (in Chinese), 64(2): 597-611 (in Chinese).
    梁智超, 宋海斌, 范文豪, 杨顺. 2022. 加利福尼亚海湾及其邻近海域亚中尺度现象的地震海洋学研究[J]. 地球物理学报, 65(8): 3040-3053.
    Liang Z C, Song H B, Fan W H, Yang S. 2022. Seismic oceanography research of submesoscale phenomena in the Gulf of California and its adjacent regions[J]. Chinese Journal of Geophysics, 65(8): 3040-3053 (in Chinese).
    南峰, 于非, 徐安琪, 丁雅楠. 2022. 西北太平洋次表层中尺度涡研究进展和展望[J]. 地球科学进展, 37(11): 1115-1126.
    Nan F, Yu F, Xu A Q, Ding Y N. 2022. Progress and prospect of subsurface-intensified eddies in the northwestern Pacific Ocean[J]. Advances in Earth Science, 37(11): 1115-1126 (in Chinese).
    宋海斌. 2012. 地震海洋学导论[M]. 上海: 上海科学技术出版社: 1–182.
    Song H B. 2012. Introduction to Seismic Oceanography[M]. Shanghai: Shanghai Scientific and Technical Publishers: 1–182 (in Chinese).
    杨顺, 宋海斌, 范文豪, 吴迪. 2021. 中美洲鹦鹉湾气旋涡的亚中尺度结构特征[J]. 地球物理学报, 64(4): 1328-1340 doi: 10.6038/cjg2021O0204

    Yang S, Song H B, Fan W H, Wu D. 2021. Submesoscale features of a cyclonic eddy in the Gulf of Papagayo, Central America[J]. Chinese Journal of Geophysics (in Chinese), 64(4): 1328-1340 (in Chinese). doi: 10.6038/cjg2021O0204
    Alford M H, Peacock T, Mackinnon J A, Nash J D, Buijsman M C, Centurioni L R, Chao S Y, Chang M H, Farmer D M, Fringer O B, Fu K H, Gallacher P C, Graber H C, Helfrich K R, Jachec S M, Jackson C R, Klymak J M, Ko D S, Jan S, Johnston T M S, Legg S, Lee I H, Lien R C, Mercier M J, Moum J N, Musgrave R, Park J H, Pickering A I, Pinkel R, Rainville L, Ramp S R, Rudnick D L, Sarkar S, Scotti A, Simmons H L, St Laurent L C, Venayagamoorthy S K, Wang Y H, Wang J, Yang Y J, Paluszkiewicz T, Tang T Y. 2015. The formation and fate of internal waves in the South China Sea[J]. Nature, 521(7550): 65-69. doi: 10.1038/nature14399
    Bai Y, Song H B, Guan Y X, Yang S X. 2017. Estimating depth of polarity conversion of shoaling internal solitary waves in the northeastern South China Sea[J]. Cont Shelf Res, 143: 9-17. doi: 10.1016/j.csr.2017.05.014
    Buffett G G, Krahmann G, Klaeschen D, Schroeder K, Sallarès V, Papenberg C, Ranero C R, Zitellini N. 2017. Seismic Oceanography in the Tyrrhenian Sea: Thermohaline staircases, eddies, and internal waves[J]. J Geophys Res: Oceans, 122(11): 8503-8523. doi: 10.1002/2017JC012726
    Cai S Q, Xie J S, He J L. 2012. An overview of internal solitary waves in the South China Sea[J]. Surv Geophys, 33(5): 927-943. doi: 10.1007/s10712-012-9176-0
    Dickinson A, White N J, Caulfield C P. 2017. Spatial variation of diapycnal diffusivity estimated from seismic imaging of internal wave field, Gulf of Mexico[J]. J Geophys Res: Oceans, 122(12): 9827-9854. doi: 10.1002/2017JC013352
    Dickinson A, Gunn K L. 2022. The next decade of seismic oceanography: Possibilities, challenges and solutions[J]. Front Mar Sci, 9: 736693. doi: 10.3389/fmars.2022.736693
    Fan W H, Song H B, Gong Y, Sun S Q, Zhang K, Wu D, Kuang Y Y, Yang S. 2021. The shoaling mode-2 internal solitary waves in the Pacific coast of Central America investigated by marine seismic survey data[J]. Cont Shelf Res, 212: 104318. doi: 10.1016/j.csr.2020.104318
    Fan W H, Song H B, Gong Y, Yang S, Zhang K. 2022. Regional study of mode-2 internal solitary waves at the Pacific coast of Central America using marine seismic survey data[J]. Nonlin Processes Geophys, 29(2): 141-160. doi: 10.5194/npg-29-141-2022
    Fu K H, Wang Y H, St. Laurent L, Simmons H L, Wang D P. 2012. Shoaling of large-amplitude nonlinear internal waves at Dongsha Atoll in the northern South China Sea[J]. Cont Shelf Res, 37: 1-7. doi: 10.1016/j.csr.2012.01.010.
    Geng M H, Song H B, Guan Y X, Bai Y. 2019. Analyzing amplitudes of internal solitary waves in the northern South China Sea by use of seismic oceanography data[J]. Deep Sea Res Part I: Oceanogr Res Pap, 146: 1−10.
    Gong Y, Song H B, Zhao Z X, Guan Y X, Kuang Y Y. 2021a. On the vertical structure of internal solitary waves in the northeastern South China Sea[J]. Deep Sea Res Part I: Oceanogr Res Pap, 173: 103550.
    Gong Y, Song H B, Zhao Z X, Guan Y X, Zhang K, Kuang Y Y, Fan W H. 2021b. Enhanced diapycnal mixing with polarity-reversing internal solitary waves revealed by seismic reflection data[J]. Nonlin Processes Geophys, 28(3): 445-465. doi: 10.5194/npg-28-445-2021
    Gorman A R, Smillie M W, Cooper J K, Bowman M H, Vennell R, Holbrook W S, Frew R. 2018. Seismic characterization of oceanic water masses, water mass boundaries, and mesoscale eddies SE of New Zealand[J]. J Geophys Res: Oceans, 123(2): 1519-1532. doi: 10.1002/2017JC013459
    Gunn K L, White N J, Larter R D, Caulfield C P. 2018. Calibrated seismic imaging of eddy-dominated warm-water transport across the Bellingshausen Sea, Southern Ocean[J]. J Geophys Res: Oceans, 123(4): 3072-3099. doi: 10.1029/2018JC013833
    Gunn K L, White N, Caulfield C C P. 2020. Time-lapse seismic imaging of oceanic fronts and transient lenses within south Atlantic Ocean[J]. J Geophys Res: Oceans, 125(7): e2020JC016293.
    Gunn K L, Dickinson A, White N J, Caulfield C C P. 2021. Vertical mixing and heat fluxes conditioned by a seismically imaged oceanic front[J]. Front Mar Sci, 8: 697179. doi: 10.3389/fmars.2021.697179
    Holbrook W S, Páramo P, Pearse S, Schmitt R W. 2003. Thermohaline fine structure in an oceanographic front from seismic reflection profiling[J]. Science, 301(5634): 821-824. doi: 10.1126/science.1085116
    Lamb K G. 2014. Internal wave breaking and dissipation mechanisms on the continental slope/shelf[J]. Annu Rev Fluid Mech, 46(1): 231-254. doi: 10.1146/annurev-fluid-011212-140701
    Liu A K, Chang Y S, Hsu M K, Liang N K. 1998. Evolution of nonlinear internal waves in the East and South China Seas[J]. J Geophys Res: Oceans, 103(C4): 7995-8008. doi: 10.1029/97JC01918
    Nakamura Y, Noguchi T, Tsuji T, Itoh S, Niino H, Matsuoka T. 2006. Simultaneous seismic reflection and physical oceanographic observations of oceanic fine structure in the Kuroshio extension front[J]. Geophys Res Lett, 33(23): L23605. doi: 10.1029/2006GL027437
    Papenberg C, Klaeschen D, Krahmann G, Hobbs R W. 2010. Ocean temperature and salinity inverted from combined hydrographic and seismic data[J]. Geophys Res Lett, 37(4): L04601.
    Pinheiro L M, Song H B, Ruddick B, Dubert J, Ambar I, Mustafa K, Bezerra R. 2010. Detailed 2-D imaging of the Mediterranean outflow and meddies off W Iberia from multichannel seismic data[J]. J Mar Syst, 79(1/2): 89-100.
    Ruddick B, Song H B, Dong C Z, Pinheiro L. 2009. Water column seismic images as maps of temperature gradient[J]. Oceanography, 22(1): 192-205. doi: 10.5670/oceanog.2009.19
    Sheen K L, White N J, Hobbs R W. 2009. Estimating mixing rates from seismic images of oceanic structure[J]. Geophys Res Lett, 36(24): L00D04.
    Song H B, Pinheiro L M, Ruddick B, Teixeira F C. 2011. Meddy, spiral arms, and mixing mechanisms viewed by seismic imaging in the Tagus Abyssal Plain (SW Iberia) [J]. J Mar Res, 69(4/5/6): 827-842. https: //doi.org/10.1357/002224011799849309
    Song H B, Chen J X, Pinheiro L M, Ruddick B, Fan W H, Gong Y, Zhang K. 2021a. Progress and prospects of seismic oceanography[J]. Deep Sea Res Part I: Oceanogr Res Pap, 177: 103631.
    Song H B, Gong Y, Yang S X, Guan Y X. 2021b. Observations of internal structure changes in shoaling internal solitary waves based on seismic oceanography method[J]. Front Mar Sci, 8: 733959. doi: 10.3389/fmars.2021.733959
    Tang Q S, Wang C X, Wang D X, Pawlowicz R. 2014. Seismic, satellite and site observations of internal solitary waves in the NE South China Sea[J]. Sci Rep, 4: 5374. doi: 10.1038/srep05374
    Tang Q S, Hobbs R, Wang D X, Sun L T, Zheng C, Li J B, Dong C Z. 2015. Marine seismic observation of internal solitary wave packets in the northeast South China Sea[J]. J Geophys Res: Oceans, 120(12): 8487-8503. doi: 10.1002/2015JC011362
    Tang Q S, Gulick S P S, Sun J, Sun L T, Jing Z Y. 2020. Submesoscale features and turbulent mixing of an oblique anticyclonic eddy in the Gulf of Alaska Investigated by Marine Seismic Survey Data[J]. J Geophys Res: Oceans, 125(1): e2019JC015393.
    Xiao W X, Sheen K L, Tang Q S, Shutler J, Hobbs R, Ehmen T. 2021. Temperature and salinity inverted for a Mediterranean Eddy captured with seismic data, using a spatially iterative Markov Chain Monte Carlo approach[J]. Front Mar Sci, 8: 734125. doi: 10.3389/fmars.2021.734125
    Yang S, Song H B, Zhang K. 2022a. Research on submesoscale eddy and front near the South Shetland Islands (Antarctic Peninsula) using seismic oceanography data[J]. Adv Polar Sci, 33(1): 110-118.
    Yang S, Song H B, Coakley B, Zhang K, Fan W H. 2022b. A mesoscale eddy with submesoscale spiral bands observed from seismic reflection sections in the Northwind Basin, Arctic Ocean[J]. J Geophys Res: Oceans, 127(3): e2021JC017984. doi: 10.1029/2021JC017984
    Zhang K, Song H B, Coakley B, Yang S, Fan W H. 2022. Investigating eddies from coincident seismic and hydrographic measurements in the Chukchi Borderlands, the western Arctic Ocean[J]. J Geophys Res: Oceans, 127(10): e2022JC018453.
  • Related Articles

  • Cited by

    Periodical cited type(9)

    1. 石玉燕,张春鹏,颜启,苗庆杰. 2022-01-15汤加火山喷发的地震学震级测定. 大地测量与地球动力学. 2023(02): 209-214 .
    2. 韩光洁,刘奕君,席楠. 2023年山东平原M_S 5.5地震宽频带面波震级和近场地震动反应谱空间分布特征分析. 地震地磁观测与研究. 2023(06): 13-19 .
    3. Qicheng Li,Jingwen Sun,Guimei Xi,Jing Liu. The Doppler effect induced by earthquakes: A case study of the Wenchuan M_S8.0 earthquake. Geodesy and Geodynamics. 2022(05): 435-444 .
    4. 孙冬军,刘芳,毕波. 芦山地震和九寨沟地震台站实测震级差异性分析. 中国地震. 2022(01): 112-119 .
    5. 石玉燕,张春鹏,颜启,苗庆杰. 2022年1月8日门源6.9级地震山东地震台网测定面波震级对比分析. 地震地磁观测与研究. 2022(04): 1-7 .
    6. 孔韩东,刘瑞丰,边银菊,李赞,王子博,胡岩松. 地震辐射能量测定方法研究及其在汶川8.0级地震中的应用. 地球物理学报. 2022(12): 4775-4788 .
    7. 陈建龙. 爆破地震波传播过程中的多普勒效应研究. 爆破器材. 2021(01): 48-52 .
    8. 李启成,闵也,何书耕. 用小波变换讨论地震中的多普勒现象. 吉林大学学报(地球科学版). 2021(03): 909-918 .
    9. 邓文泽. 2021年3月5日新西兰克马德克群岛M7.8面波震级测定差异分析. 地震科学进展. 2021(09): 395-399 .

    Other cited types(4)

Catalog

    Article views (472) PDF downloads (171) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return