Citation: | Song H B. 2023. New progress in seismic oceanography. Acta Seismologica Sinica,45(3):376−391. DOI: 10.11939/jass.20230014 |
拜阳, 宋海斌, 关永贤, 杨胜雄, 刘伯然, 陈江欣, 耿明会. 2015. 利用地震海洋学方法研究南海东北部东沙海域内孤立波的结构特征[J]. 科学通报, 60(10): 944-951.
|
Bai Y, Song H B, Guan Y X, Yang S X, Liu B R, Chen J X, Geng M H. 2015. Nonlinear internal solitary waves in the northeast South China Sea near Dongsha Atoll using seismic oceanography[J]. Chinese Science Bulletin, 60(10): 944-951 (in Chinese). doi: 10.1360/N972014-00911
|
范文豪, 宋海斌, 龚屹, 张锟, 孙绍箐. 2021. 中美洲海域第二模态内孤立波的地震海洋学研究[J]. 地球物理学报, 64(1): 195-208.
|
Fan W H, Song H B, Gong Y, Zhang K, Sun S Q. 2021. Seismic oceanography study of mode-2 internal solitary waves offshore Central America[J]. Chinese Journal of Geophysics (in Chinese), 64(1): 195-208 (in Chinese).
|
邝芸艳, 王亚龙, 宋海斌, 关永贤, 范文豪, 龚屹, 张锟. 2021. 南海东北部内孤立波包的地震海洋学和遥感研究[J]. 地球物理学报, 64(2): 597-611.
|
Kuang Y Y, Wang Y L, Song H B, Guan Y Y, Fan W H, Gong Y, Zhang K. 2021. Study of internal solitary wave packets in the northeastern South China Sea based on seismic oceanography and remote sensing[J]. Chinese Journal of Geophysics (in Chinese), 64(2): 597-611 (in Chinese).
|
梁智超, 宋海斌, 范文豪, 杨顺. 2022. 加利福尼亚海湾及其邻近海域亚中尺度现象的地震海洋学研究[J]. 地球物理学报, 65(8): 3040-3053.
|
Liang Z C, Song H B, Fan W H, Yang S. 2022. Seismic oceanography research of submesoscale phenomena in the Gulf of California and its adjacent regions[J]. Chinese Journal of Geophysics, 65(8): 3040-3053 (in Chinese).
|
南峰, 于非, 徐安琪, 丁雅楠. 2022. 西北太平洋次表层中尺度涡研究进展和展望[J]. 地球科学进展, 37(11): 1115-1126.
|
Nan F, Yu F, Xu A Q, Ding Y N. 2022. Progress and prospect of subsurface-intensified eddies in the northwestern Pacific Ocean[J]. Advances in Earth Science, 37(11): 1115-1126 (in Chinese).
|
宋海斌. 2012. 地震海洋学导论[M]. 上海: 上海科学技术出版社: 1–182.
|
Song H B. 2012. Introduction to Seismic Oceanography[M]. Shanghai: Shanghai Scientific and Technical Publishers: 1–182 (in Chinese).
|
杨顺, 宋海斌, 范文豪, 吴迪. 2021. 中美洲鹦鹉湾气旋涡的亚中尺度结构特征[J]. 地球物理学报, 64(4): 1328-1340 doi: 10.6038/cjg2021O0204
Yang S, Song H B, Fan W H, Wu D. 2021. Submesoscale features of a cyclonic eddy in the Gulf of Papagayo, Central America[J]. Chinese Journal of Geophysics (in Chinese), 64(4): 1328-1340 (in Chinese). doi: 10.6038/cjg2021O0204
|
Alford M H, Peacock T, Mackinnon J A, Nash J D, Buijsman M C, Centurioni L R, Chao S Y, Chang M H, Farmer D M, Fringer O B, Fu K H, Gallacher P C, Graber H C, Helfrich K R, Jachec S M, Jackson C R, Klymak J M, Ko D S, Jan S, Johnston T M S, Legg S, Lee I H, Lien R C, Mercier M J, Moum J N, Musgrave R, Park J H, Pickering A I, Pinkel R, Rainville L, Ramp S R, Rudnick D L, Sarkar S, Scotti A, Simmons H L, St Laurent L C, Venayagamoorthy S K, Wang Y H, Wang J, Yang Y J, Paluszkiewicz T, Tang T Y. 2015. The formation and fate of internal waves in the South China Sea[J]. Nature, 521(7550): 65-69. doi: 10.1038/nature14399
|
Bai Y, Song H B, Guan Y X, Yang S X. 2017. Estimating depth of polarity conversion of shoaling internal solitary waves in the northeastern South China Sea[J]. Cont Shelf Res, 143: 9-17. doi: 10.1016/j.csr.2017.05.014
|
Buffett G G, Krahmann G, Klaeschen D, Schroeder K, Sallarès V, Papenberg C, Ranero C R, Zitellini N. 2017. Seismic Oceanography in the Tyrrhenian Sea: Thermohaline staircases, eddies, and internal waves[J]. J Geophys Res: Oceans, 122(11): 8503-8523. doi: 10.1002/2017JC012726
|
Cai S Q, Xie J S, He J L. 2012. An overview of internal solitary waves in the South China Sea[J]. Surv Geophys, 33(5): 927-943. doi: 10.1007/s10712-012-9176-0
|
Dickinson A, White N J, Caulfield C P. 2017. Spatial variation of diapycnal diffusivity estimated from seismic imaging of internal wave field, Gulf of Mexico[J]. J Geophys Res: Oceans, 122(12): 9827-9854. doi: 10.1002/2017JC013352
|
Dickinson A, Gunn K L. 2022. The next decade of seismic oceanography: Possibilities, challenges and solutions[J]. Front Mar Sci, 9: 736693. doi: 10.3389/fmars.2022.736693
|
Fan W H, Song H B, Gong Y, Sun S Q, Zhang K, Wu D, Kuang Y Y, Yang S. 2021. The shoaling mode-2 internal solitary waves in the Pacific coast of Central America investigated by marine seismic survey data[J]. Cont Shelf Res, 212: 104318. doi: 10.1016/j.csr.2020.104318
|
Fan W H, Song H B, Gong Y, Yang S, Zhang K. 2022. Regional study of mode-2 internal solitary waves at the Pacific coast of Central America using marine seismic survey data[J]. Nonlin Processes Geophys, 29(2): 141-160. doi: 10.5194/npg-29-141-2022
|
Fu K H, Wang Y H, St. Laurent L, Simmons H L, Wang D P. 2012. Shoaling of large-amplitude nonlinear internal waves at Dongsha Atoll in the northern South China Sea[J]. Cont Shelf Res, 37: 1-7. doi: 10.1016/j.csr.2012.01.010.
|
Geng M H, Song H B, Guan Y X, Bai Y. 2019. Analyzing amplitudes of internal solitary waves in the northern South China Sea by use of seismic oceanography data[J]. Deep Sea Res Part I: Oceanogr Res Pap, 146: 1−10.
|
Gong Y, Song H B, Zhao Z X, Guan Y X, Kuang Y Y. 2021a. On the vertical structure of internal solitary waves in the northeastern South China Sea[J]. Deep Sea Res Part I: Oceanogr Res Pap, 173: 103550.
|
Gong Y, Song H B, Zhao Z X, Guan Y X, Zhang K, Kuang Y Y, Fan W H. 2021b. Enhanced diapycnal mixing with polarity-reversing internal solitary waves revealed by seismic reflection data[J]. Nonlin Processes Geophys, 28(3): 445-465. doi: 10.5194/npg-28-445-2021
|
Gorman A R, Smillie M W, Cooper J K, Bowman M H, Vennell R, Holbrook W S, Frew R. 2018. Seismic characterization of oceanic water masses, water mass boundaries, and mesoscale eddies SE of New Zealand[J]. J Geophys Res: Oceans, 123(2): 1519-1532. doi: 10.1002/2017JC013459
|
Gunn K L, White N J, Larter R D, Caulfield C P. 2018. Calibrated seismic imaging of eddy-dominated warm-water transport across the Bellingshausen Sea, Southern Ocean[J]. J Geophys Res: Oceans, 123(4): 3072-3099. doi: 10.1029/2018JC013833
|
Gunn K L, White N, Caulfield C C P. 2020. Time-lapse seismic imaging of oceanic fronts and transient lenses within south Atlantic Ocean[J]. J Geophys Res: Oceans, 125(7): e2020JC016293.
|
Gunn K L, Dickinson A, White N J, Caulfield C C P. 2021. Vertical mixing and heat fluxes conditioned by a seismically imaged oceanic front[J]. Front Mar Sci, 8: 697179. doi: 10.3389/fmars.2021.697179
|
Holbrook W S, Páramo P, Pearse S, Schmitt R W. 2003. Thermohaline fine structure in an oceanographic front from seismic reflection profiling[J]. Science, 301(5634): 821-824. doi: 10.1126/science.1085116
|
Lamb K G. 2014. Internal wave breaking and dissipation mechanisms on the continental slope/shelf[J]. Annu Rev Fluid Mech, 46(1): 231-254. doi: 10.1146/annurev-fluid-011212-140701
|
Liu A K, Chang Y S, Hsu M K, Liang N K. 1998. Evolution of nonlinear internal waves in the East and South China Seas[J]. J Geophys Res: Oceans, 103(C4): 7995-8008. doi: 10.1029/97JC01918
|
Nakamura Y, Noguchi T, Tsuji T, Itoh S, Niino H, Matsuoka T. 2006. Simultaneous seismic reflection and physical oceanographic observations of oceanic fine structure in the Kuroshio extension front[J]. Geophys Res Lett, 33(23): L23605. doi: 10.1029/2006GL027437
|
Papenberg C, Klaeschen D, Krahmann G, Hobbs R W. 2010. Ocean temperature and salinity inverted from combined hydrographic and seismic data[J]. Geophys Res Lett, 37(4): L04601.
|
Pinheiro L M, Song H B, Ruddick B, Dubert J, Ambar I, Mustafa K, Bezerra R. 2010. Detailed 2-D imaging of the Mediterranean outflow and meddies off W Iberia from multichannel seismic data[J]. J Mar Syst, 79(1/2): 89-100.
|
Ruddick B, Song H B, Dong C Z, Pinheiro L. 2009. Water column seismic images as maps of temperature gradient[J]. Oceanography, 22(1): 192-205. doi: 10.5670/oceanog.2009.19
|
Sheen K L, White N J, Hobbs R W. 2009. Estimating mixing rates from seismic images of oceanic structure[J]. Geophys Res Lett, 36(24): L00D04.
|
Song H B, Pinheiro L M, Ruddick B, Teixeira F C. 2011. Meddy, spiral arms, and mixing mechanisms viewed by seismic imaging in the Tagus Abyssal Plain (SW Iberia) [J]. J Mar Res, 69(4/5/6): 827-842. https: //doi.org/10.1357/002224011799849309
|
Song H B, Chen J X, Pinheiro L M, Ruddick B, Fan W H, Gong Y, Zhang K. 2021a. Progress and prospects of seismic oceanography[J]. Deep Sea Res Part I: Oceanogr Res Pap, 177: 103631.
|
Song H B, Gong Y, Yang S X, Guan Y X. 2021b. Observations of internal structure changes in shoaling internal solitary waves based on seismic oceanography method[J]. Front Mar Sci, 8: 733959. doi: 10.3389/fmars.2021.733959
|
Tang Q S, Wang C X, Wang D X, Pawlowicz R. 2014. Seismic, satellite and site observations of internal solitary waves in the NE South China Sea[J]. Sci Rep, 4: 5374. doi: 10.1038/srep05374
|
Tang Q S, Hobbs R, Wang D X, Sun L T, Zheng C, Li J B, Dong C Z. 2015. Marine seismic observation of internal solitary wave packets in the northeast South China Sea[J]. J Geophys Res: Oceans, 120(12): 8487-8503. doi: 10.1002/2015JC011362
|
Tang Q S, Gulick S P S, Sun J, Sun L T, Jing Z Y. 2020. Submesoscale features and turbulent mixing of an oblique anticyclonic eddy in the Gulf of Alaska Investigated by Marine Seismic Survey Data[J]. J Geophys Res: Oceans, 125(1): e2019JC015393.
|
Xiao W X, Sheen K L, Tang Q S, Shutler J, Hobbs R, Ehmen T. 2021. Temperature and salinity inverted for a Mediterranean Eddy captured with seismic data, using a spatially iterative Markov Chain Monte Carlo approach[J]. Front Mar Sci, 8: 734125. doi: 10.3389/fmars.2021.734125
|
Yang S, Song H B, Zhang K. 2022a. Research on submesoscale eddy and front near the South Shetland Islands (Antarctic Peninsula) using seismic oceanography data[J]. Adv Polar Sci, 33(1): 110-118.
|
Yang S, Song H B, Coakley B, Zhang K, Fan W H. 2022b. A mesoscale eddy with submesoscale spiral bands observed from seismic reflection sections in the Northwind Basin, Arctic Ocean[J]. J Geophys Res: Oceans, 127(3): e2021JC017984. doi: 10.1029/2021JC017984
|
Zhang K, Song H B, Coakley B, Yang S, Fan W H. 2022. Investigating eddies from coincident seismic and hydrographic measurements in the Chukchi Borderlands, the western Arctic Ocean[J]. J Geophys Res: Oceans, 127(10): e2022JC018453.
|