Citation: | Yang X T,Wang N,Lang C. 2024. A frequency domain elastic wave full waveform inversion method based on nearly analytic discrete operator. Acta Seismologica Sinica,46(1):25−46. DOI: 10.11939/jass.20230038 |
Since ancient times, earthquakes have been an unavoidable natural phenomenon. As one of the regions with frequent seismic activities, China urgently needs advanced underground detection technology to characterize the fine structure of the lithosphere. This will provide a better understanding of the generation and development laws of earthquakes and minimize their impact on human society. Full waveform inversion (FWI) is an inversion method that utilizes the dynamic characteristics of seismic wave propagation to obtain subsurface physical parameters, providing important insights into the fine structure of the subsurface. This method further enriches the theoretical framework of conventional velocity modeling methods and has gradually become a research hotspot due to its high accuracy, multi-parameter, and multi-dimensional modeling advantages. As a high-resolution seismic inversion method, FWI minimizes the objective function that measures the discrepancy between the synthetic waveform and seismic observation data through wavefield simulation and optimization iteration, obtaining optimal subsurface medium parameters and constructing imaging. In the early stages of research, FWI was primarily performed in the time domain. Subsequently, researchers extended the inversion theory to the frequency domain. In comparison, frequency-domain inversion methods are conducive to parallel computing, reducing computational burden, and easy characterization of attenuation effects. By selecting a small number of frequencies that sufficiently cover the wavenumber, the fine structural details of the inversion model can be characterized without compromising inversion accuracy, thereby further reducing the computational cost of frequency-domain FWI. Additionally, frequency-domain wavefield simulation exhibits higher efficiency, especially in the case of multiple sources and increased attenuation factors. Therefore, conducting FWI in the frequency domain holds significant importance. With the continuous development of seismic research and rapid improvement in computer hardware, traditional acoustic wave equations have difficulty meeting the requirements of fine subsurface detection. FWI has gradually evolved towards the direction of elastic parameter inversion based on isotropic, anisotropic, viscoelastic wave equations, among others. Compared to acoustic waves, elastic waves include the propagation laws of P-waves and S-waves, providing richer wavefield information. Furthermore, in the near-surface region where the propagation time is short, it is challenging to separate body waves and surface waves, and attenuating or filtering surface waves is not easy. Both types of waves need to be considered for imaging. The elastic wave equation accurately simulates seismic wave propagation in subsurface media. Therefore, this study adopts the elastic wave equation as a mathematical model to simulate the propagation laws of seismic waves and conducts corresponding research on inversion methods. In FWI, the main computational burden lies in the forward modeling process, and the computational efficiency and accuracy of the inversion heavily depend on the quality of the forward simulation method. Considering the complex structure of the elastic wave equation, traditional numerical solving methods require more computational costs. Therefore, employing efficient forward simulation methods is crucial for improving computational efficiency and the accuracy of inversion results. The nearly analytie discrete (NAD) operator has emerged as an important class of differencing operators in recent years. Its construction principle involves approximating high-order partial derivatives using the cross-combination of nodal displacements and their gradient values. The NAD operator offers high accuracy and significantly enhances computational efficiency. Therefore, in order to improve computational efficiency and the accuracy of inversion results, this study introduces the NAD operator for frequency-domain elastic wave equation forward simulation. This study establishes a frequency-domain elastic wave FWI framework based on the NAD operator. It derives the gradient calculation formula for the inversion objective function using the sparse block structure of the impedance matrix. The idea of separating compressional and shear waves is implemented throughout the entire solution process, greatly reducing the scale of gradient calculation and suppressing interference between them, further improving inversion computational efficiency. Finally, numerical experiments using three classic media models are conducted, obtaining ideal inversion results. The effectiveness and correctness of the proposed elastic wave inversion method are validated through the trend curves of inversion errors at different frequencies. In summary, the frequency-domain elastic wave FWI method based on the NAD operator derived in this study exhibits significant advantages in the inversion of subsurface physical parameters. Through numerical experiments, we have demonstrated the effectiveness and accuracy of this method in capturing fine subsurface structures. We believe that this method has broad application prospects in geological exploration and resource development and provides valuable references for researchers in related fields.
卞爱飞,於文辉,周华伟. 2010. 频率域全波形反演方法研究进展[J]. 地球物理学进展,25(3):982–993. doi: 10.3969/j.issn.1004-2903.2010.03.037
|
Bian A F,Yu W H,Zhou H W. 2010. Progress in the frequency-domain full waveform inversion method[J]. Progress in Geophysics,25(3):982–993 (in Chinese).
|
黄少华,任志明,李振春,谷丙洛,李红梅. 2019. 纵横波分离的多震源弹性波全波形反演[J]. 石油地球物理勘探,54(5):1084–1093.
|
Huang S H,Ren Z M,Li Z C,Gu B L,Li H M. 2019. Multi-source elastic full waveform inversion based on P-wave and S-wave separation[J]. Oil Geophysical Prospecting,54(5):1084–1093 (in Chinese).
|
郎超,仇楚钧,刘少林,申文豪,李小凡,徐锡伟. 2021. 求解弹性波动方程的频率域近似解析离散化波场模拟方法[J]. 地球物理学报,64(8):2838–2857. doi: 10.6038/cjg2021O0332
|
Lang C,Qiu C J,Liu S L,Shen W H,Li X F,Xu X W. 2021. A nearly discrete analytic method of wave-field simulation for elastic wave equations in the frequency domain[J]. Chinese Journal of Geophysics,64(8):2838–2857 (in Chinese).
|
郎超,刘少林,杨晓婷,徐锡伟. 2022. 基于改进NAD方法的频率域声波逆时偏移[J]. 地球物理学报,65(3):1071–1085. doi: 10.6038/cjg2022P0501
|
Lang C,Liu S L,Yang X T,Xu X W. 2022. Frequency-domain acoustic reverse time migration based on improved NAD method[J]. Chinese Journal of Geophysics,65(3):1071–1085 (in Chinese).
|
刘璐,刘洪,刘红伟. 2013. 优化15点频率-空间域有限差分正演模拟[J]. 地球物理学报,56(2):644–652.
|
Liu L,Liu H,Liu H W. 2013. Optimal 15-point finite difference forward modeling in frequency-space domain[J]. Chinese Journal of Geophysics,56(2):644–652 (in Chinese).
|
龙锋,闻学泽,徐锡伟. 2006. 华北地区地震活断层的震级-破裂长度、破裂面积的经验关系[J]. 地震地质,28(4):511–535. doi: 10.3969/j.issn.0253-4967.2006.04.001
|
Long F,Wen X Z,Xu X W. 2006. Empirical relationships between magnitude and rupture length,and rupture area,for seismogenic active faults in North China[J]. Seismology and Geology,28(4):511–535 (in Chinese).
|
齐诚,赵大鹏,陈颙,陈棋福,王宝善. 2006. 首都圈地区地壳P波和S波三维速度结构及其与大地震的关系[J]. 地球物理学报,49(3):805–815. doi: 10.3321/j.issn:0001-5733.2006.03.024
|
Qi C,Zhao D P,Chen Y,Chen Q F,Wang B S. 2006. 3-D P and S wave velocity structures and their relationship to strong earthquakes in the Chinese Capital region[J]. Chinese Journal of Geophysics,49(3):805–815 (in Chinese).
|
任志明. 2016. 声波和弹性波波动方程有限差分正反演方法研究[D]. 北京:中国石油大学(北京):2−3.
|
Ren Z M. 2016. Research on Finite-Difference Modeling and Inversion Methods Based on Acoustic and Elastic Wave Equations[D]. Beijing:China University of Petroleum (Beijing):2−3 (in Chinese).
|
宋海斌,张关泉. 1998. 层状介质弹性参数反演问题研究综述[J]. 地球物理学进展,13(4):67–78.
|
Song H B,Zhang G Q. 1998. A summary of inversion problem research on elastic parameters of stratified media[J]. Progress in Geophysics,13(4):67–78 (in Chinese).
|
孙成禹,李振春. 2011. 地震波动力学基础[M]. 北京:石油工业出版社:1−2.
|
Sun C Y,Li Z C. 2011. Seismic Wave Dynamics Basis[M]. Beijing:Petroleum Industry Press:1−2 (in Chinese).
|
童平. 2012. 地震层析成像方法及其应用研究[D]. 北京:清华大学:187−189.
|
Tong P. 2012. Seismic Tomography Methods and Their Applications[D]. Beijing:Tsinghua University:187−189 (in Chinese).
|
王椿镛,段永红,吴庆举,王志铄. 2016. 华北强烈地震深部构造环境的探测与研究[J]. 地震学报,38(4):511–549.
|
Wang C Y,Duan Y H,Wu Q J,Wang Z S. 2016. Exploration on the deep tectonic environment of strong earthquakes in North China and relevant research findings[J]. Acta Seismologica Sinica,38(4):511–549 (in Chinese).
|
殷文,印兴耀,吴国忱,梁锴. 2006. 高精度频率域弹性波方程有限差分方法及波场模拟[J]. 地球物理学报,49(2):561–568.
|
Yin W,Yin X Y,Wu G C,Liang K. 2006. The method of finite difference of high precision elastic wave equations in the frequency domain and wave-field simulation[J]. Chinese Journal of Geophysics,49(2):561–568 (in Chinese).
|
张霖斌,姚振兴. 2000. 层状介质的声波波动方程反演[J]. 地球物理学进展,15(2):22–29.
|
Zhang L B,Yao Z X. 2000. Wavform inversion of acoustic data in layered media[J]. Progress in Geophysics,15(2):22–29 (in Chinese).
|
张文生,罗嘉,滕吉文. 2015. 频率多尺度全波形速度反演[J]. 地球物理学报,58(1):216–228. doi: 10.6038/cjg20150119
|
Zhang W S,Luo J,Teng J W. 2015. Frequency multiscale full-waveform velocity inversion[J]. Chinese Journal of Geophysics,58(1):216–228 (in Chinese).
|
张文生,张丽娜. 2020. 基于有限元方法的频率域弹性波全波形反演[J]. 数值计算与计算机应用,41(4):315–336.
|
Zhang W S,Zhang L N. 2020. Elastic wave full-waveform inversion based on the finite-element method in the frequency domain[J]. Journal on Numerical Methods and Computer Applications,41(4):315–336 (in Chinese).
|
祝贺君,刘沁雅,杨继东. 2023. 地震学全波形反演进展[J]. 地球与行星物理论评(中英文),54(3):287–317.
|
Zhu H J,Liu Q Y,Yang J D. 2023. Recent progress on full waveform inversion[J]. Reviews of Geophysics and Planetary Phy sics,54(3):287–317 (in Chinese).
|
Ben-Hadj-Ali H,Operto S,Virieux J. 2011. An efficient frequency-domain full waveform inversion method using simultaneous encoded sources[J]. Geophysics,76(4):R109–R124. doi: 10.1190/1.3581357
|
Bornstein G,Biescas B,Sallarès V,Mojica J F. 2013. Direct temperature and salinity acoustic full waveform inversion[J]. Geophys Res Lett,40(16):4344–4348. doi: 10.1002/grl.50844
|
Brossier R,Operto S,Virieux J. 2009. Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion[J]. Geophysics,74(6):WCC105–WCC118. doi: 10.1190/1.3215771
|
Bunks C,Saleck F M,Zaleski S,Chavent G. 1995. Multiscale seismic waveform inversion[J]. Geophysics,60(5):1457–1473. doi: 10.1190/1.1443880
|
Geng Y,Pan W Y,Innanen K A. 2018. Frequency-domain full-waveform inversion with non-linear descent directions[J]. Geophys J Int,213(2):739–756. doi: 10.1093/gji/ggy002
|
Hestholm S O,Ruud B O,Husebye E S. 1999. 3-D versus 2-D finite-difference seismic synthetics including real surface topography[J]. Phys Earth Planet Inter,113(1/2/3/4):339–354.
|
Jeong W,Lee H Y,Min D J. 2012. Full waveform inversion strategy for density in the frequency domain[J]. Geophys J Int,188(3):1221–1242. doi: 10.1111/j.1365-246X.2011.05314.x
|
Komatitsch D,Tromp J. 2003. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation[J]. Geophys J Int,154(1):146–153. doi: 10.1046/j.1365-246X.2003.01950.x
|
Komatitsch D,Tsuboi S,Tromp J. 2005. The spectral-element method in seismology[G]//Seismic Earth:Array Analysis of Broadband Seismograms,Volume 157. Washington:American Geophysical Union:205.
|
Lang C,Yang D H. 2017. A nearly analytic discrete method for solving the acoustic-wave equations in the frequency domain[J]. Geophysics,82(1):T43–T57. doi: 10.1190/geo2016-0248.1
|
Lang C,Li Q S,Zhou Y J,He X J,Han R B. 2020. A high-precision low-dispersive nearly analytic difference method with its application in frequency-domain seismic waveform inversion[J]. Explor Geophys,51(3):355–377. doi: 10.1080/08123985.2019.1699786
|
Li A M,Liu H,Yuan Y X,Hu T,Guo X B. 2018. Modeling of frequency-domain elastic-wave equation with a general optimal scheme[J]. J Appl Geophys,159:1–15. doi: 10.1016/j.jappgeo.2018.07.014
|
Li J S,Yang D H,Liu F Q. 2013. An efficient reverse time migration method using local nearly analytic discrete operator[J]. Geophysics,78(1):S15–S23. doi: 10.1190/geo2012-0247.1
|
Liu S L,Yang D H,Ma J. 2017. A modified symplectic PRK scheme for seismic wave modeling[J]. Comput Geosci,99:28–36. doi: 10.1016/j.cageo.2016.11.001
|
Moczo P,Robertsson J O A,Eisner L. 2007. The finite-difference time-domain method for modeling of seismic wave propagation[J]. Adv Geophys,48:421–516.
|
Operto S,Virieux J,Amestoy P,L’Excellent J Y,Giraud L,Ali H B H. 2007. 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver:A feasibility study[J]. Geophysics,72(5):SM195–SM211. doi: 10.1190/1.2759835
|
Pratt R G,Worthington M H. 1988. The application of diffraction tomography to cross-hole seismic data[J]. Geophysics,53(10):1284–1294. doi: 10.1190/1.1442406
|
Pratt R G. 1990. Frequency-domain elastic wave modeling by finite differences:A tool for crosshole seismic imaging[J]. Geophysics,55(5):626–632. doi: 10.1190/1.1442874
|
Pratt R G,Shin C,Hick G J. 1998. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[J]. Geophys J Int,133(2):341–362. doi: 10.1046/j.1365-246X.1998.00498.x
|
Pratt R G. 1999. Seismic waveform inversion in the frequency domain,part 1:Theory and verification in a physical scale model[J]. Geophysics,64(3):888–901. doi: 10.1190/1.1444597
|
Prieux V,Brossier R,Operto S,Virieux J. 2013. Multiparameter full waveform inversion of multicomponent ocean-bottom-cable data from the Valhall field,part 2:Imaging compressive-wave and shear-wave velocities[J]. Geophys J Int,194(3):1665–1681. doi: 10.1093/gji/ggt178
|
Pyun S,Son W,Shin C. 2009. Frequency-domain waveform inversion using an l1-norm objective function[J]. Explor Geophys,40(2):227–232. doi: 10.1071/EG08103
|
Qu Y M,Li J L,Li Z C,Huang J P. 2018. An elastic full-waveform inversion based on wave-mode separation[J]. Explor Geophys,49(4):530–552. doi: 10.1071/EG16158
|
Ren Z M,Liu Y. 2016. A hierarchical elastic full-waveform inversion scheme based on wavefield separation and the multistep-length approach[J]. Geophysics,81(3):R99–R123. doi: 10.1190/geo2015-0431.1
|
Saad Y. 2003. Iterative Methods for Sparse Linear Systems[M]. Philadelphia:Society for Industrial and Applied Mathematics:157−214.
|
Shin C,Yoon K,Marfurt K J,Park K,Yang D,Lim H Y,Chung S,Shin S. 2001. Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging and inversion[J]. Geophysics,66(6):1856–1863. doi: 10.1190/1.1487129
|
Sirgue L,Pratt R G. 2004. Efficient waveform inversion and imaging:A strategy for selecting temporal frequencies[J]. Geophy sics,69(1):231–248. doi: 10.1190/1.1649391
|
Tape C,Liu Q Y,Tromp J. 2007. Finite‐frequency tomography using adjoint methods-methodology and examples using membrane surface waves[J]. Geophys J Int,168(3):1105–1129. doi: 10.1111/j.1365-246X.2006.03191.x
|
Tarantola A. 1984. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics,49(8):1259–1266. doi: 10.1190/1.1441754
|
Tessmer E,Kosloff D,Behle A. 1992. Elastic wave propagation simulation in the presence of surface topography[J]. Geophys J Int,108(2):621–632. doi: 10.1111/j.1365-246X.1992.tb04641.x
|
Tong P,Yang D H,Hua B L. 2011. High accuracy wave simulation-revised derivation,numerical analysis and testing of a nearly analytic integration discrete method for solving acoustic wave equation[J]. Int J Solids Struct,48(1):56–70. doi: 10.1016/j.ijsolstr.2010.09.003
|
Tong P,Chen C W,Komatitsch D,Basini P,Liu Q Y. 2014. High-resolution seismic array imaging based on an SEM-FK hybrid method[J]. Geophys J Int,197(1):369–395. doi: 10.1093/gji/ggt508
|
Tromp J,Tape C,Liu Q Y. 2005. Seismic tomography,adjoint methods,time reversal and banana-doughnut kernels[J]. Geophys J Int,160(1):195–216.
|
Virieux J,Operto S. 2009. An overview of full-waveform inversion in exploration geophysics[J]. Geophysics,74(6):WCC1–WCC26. doi: 10.1190/1.3238367
|
Virieux J,Asnaashari A,Brossier R,Métivier L,Ribodetti A,Zhou W. 2017. An introduction to full waveform inversion[G]//Encyclopedia of Exploration Geophysics. Society of Exploration Geophysicists:R1-1−R1-40.
|
Wang Y H,Rao Y. 2006. Crosshole seismic waveform tomography,I:Strategy for real data application[J]. Geophys J Int,166(3):1224–1236. doi: 10.1111/j.1365-246X.2006.03030.x
|
Wang Y W,Dong L G,Liu Y Z,Yang J Z. 2016. 2D frequency-domain elastic full-waveform inversion using the block-diagonal pseudo-Hessian approximation[J]. Geophysics,81(5):R247–R259. doi: 10.1190/geo2015-0678.1
|
Yang D H,Teng J W,Zhang Z J,Liu E R. 2003. A nearly analytic discrete method for acoustic and elastic wave equations in anisotropic media[J]. Bull Seismol Soc Am,93(2):882–890. doi: 10.1785/0120020125
|
Yang D H,Lu M,Wu R S,Peng J M. 2004. An optimal nearly analytic discrete method for 2D acoustic and elastic wave equations[J]. Bull Seismol Soc Am,94(5):1982–1992. doi: 10.1785/012003155
|
Yang D H,Liu E R,Song G J,Wang N. 2009. Elastic wave modelling method based on the displacement-velocity fields:An improving nearly analytic discrete approximation[J]. J Seismol,13(2):209–217. doi: 10.1007/s10950-008-9122-2
|
Yang D H,Song G J,Zhang J H. 2010. A modified NAD algorithm with minimum numerical dispersion for simulation of anisotropic wave propagation[J]. J Seism Explor,19(1):21–42.
|
Yang J D,Zhu H J,Li X Y,Ren L,Zhang S. 2020. Estimating P wave velocity and attenuation structures using full waveform inversion based on a time domain complex‐valued viscoacoustic wave equation:The method[J]. J Geophys Res: Solid Earth,125(6):e2019JB019129. doi: 10.1029/2019JB019129
|
Youn O K,Zhou H W. 2001. Depth imaging with multiples[J]. Geophysics,66(1):246–255. doi: 10.1190/1.1444901
|
Zhao Z C,Chen J Y,Liu X B. 2020. Frequency-domain finite-difference elastic wave modeling in the presence of surface topography[J]. Pure Appl Geophys,177(6):2821–2839. doi: 10.1007/s00024-019-02402-1
|
1. |
罗全波,陈学良,高孟潭,李宗超,李铁飞. 集集地震近断层速度脉冲分析. 国际地震动态. 2019(10): 2-11 .
![]() |