Citation: | Li J Y,Xu Y R,Zhang J L,Mu R Y. 2024. Change identification of coseismic surface rupture zone over time based on multi-source satellite images:A casestudy of the west of Kunlunshan Pass MS8.1 earthquake in 2001. Acta Seismologica Sinica,46(6):982−1001. DOI: 10.11939/jass.20230069 |
Coseismic surface rupture is the permanent deformation on the surface in the middle and upper parts of the earth’s crust during a strong earthquake occurred. It indicates to a certain extent the deep structural characteristics of the active faults and the pre-existing tectonic environment , so complete extraction of characteristic of coseismic surface rupture has an important influence on the understanding of geometry and structure of the active faults.
On November 14, 2001, a West Pass of Kunlunshan earthquake with magnitude of MS8.1 occurred at Hoh Xil of no man’s land in Golmud City, Qinghai Province, northern Qinghai-Xizang Plateau. The instrumental epicenter was located near the Kunlun mountains at the junction of Xinjiang Uygur Autonomous Region and Qinghai Province within higher local altitude. The strong quake destroyed the Qinghai-Xizang Railway under construction and Qinghai-Xizang Highway connecting Xining to Lhasa, causing major economic losses to the country's lifeline projects. Due to the hypoxia, harsh natural environment, and inconvenient transportation of the epicenter area which difficult to conduct extensive field surveys. It is necessary to use high-resolution satellite archived images to study the time-varying characteristics of coseismic surface rupture induced by recent strong earthquakes, which has important reference significance for conducting research on historical strong earthquake events. This paper uses multi-temporal high-resolution satellite images (with resolution of 1−6 m) covering the coseismic surface rupture zone of the 2001 MS8.1 mainshock in the west of Kunlun Pass as the main research data to discuss the changes of coseismic surface rupture zone at different segments under natural surface process and check the reasons for its changes.
We select USGS KeyHole images with a spatial resolution of 6 m as pre-earthquake images, and the multi-period image data within 20 years post- earthquake from Google Earth (1 m), ALOS (10 m), Chinese GF-2 (1 m), and GF-7 (0.6 m). We use a comprehensive method of machine-assisted visual interpretation to extract the distribution of the coseismic rupture zone. The research results show that: ① A nearly 400 km linear coseismic surface rupture zone was formed during the 2001 earthquake, no pre-existing rupture remains were found in the relatively shorter western section before the earthquake, while the fresh coseismic rupture was reoccurrence along pre-existing earthquake ruptures at the longer eastern section. ② In 2003, two years after the earthquake, the coseismic surface ruptures locating at lake surface, crossing river valleys, gullies and alluvial fans which been checked during the earthquake field survey were rapidly affected by seasonal water flow and temperature (lake ice melt) changes. In 2011, 10 years after the earthquake, the surface rupture segments gradually showed a significant fragmented distribution on the images. Usually, continuous coseismic surface rupture zones can only be identified on high-level terraces or locations far away from active alluvial fans; in 2021, 20 years after the earthquake, coseismic surface ruptures on low-level terraces are almost impossible to identify, while the rupture zones on high-level terraces are relatively intact. The total length of identifiable rupture zones sharply reduced to 64%. More than 500 coseismic rupture sections had disappeared from the images during the past 20 years. ③ The measurement of coseismic horizontal dislocation based on GF image 20 years after the earthquake shows that the distribution of horizontal dislocation still has multiple peaks with maximum measured horizontal coseismic slip of 8.6 m, which is consistent with previous field survey but slightly smaller, and this proved that high quality satellite images can be used to combine the discontinuous coseismic rupture zone to together the length.
The identification of whole coseismic surface rupture zones on images is mainly affected by the surface processes. It is also affected by the spatial resolution of the images and their acquisition time. The identification of coseismic surface rupture of strong earthquakes can rely on emergency scientific surveys and satellite and aerial image data shortly after the earthquakes. However, the identification of surface rupture zones in uninhabited areas and historical strong earthquakes mainly relies on long-elapsed time and satellite imagery. Through residual rupture zone information on older landforms, it can recover more complete surface rupture zones than can be directly observed at the surface ground. Using satellite remote sensing images, scholars can restore the rupture scale of paleo-earthquakes and historical earthquakes, the surface rupture zone can be traced back through the residual rupture traces on older landforms, which is helpful in estimating the total length of the surface rupture zone, its magnitude, etc. Our research shows that the transformation process of coseismic surface ruptures induced by strong earthquakes can be understood in detail using multi-temporal high-spatial resolution images, which provides a methodological reference for exploring a large number of active faults within the Qinghai-Xizang Plateau to assess their earthquake risk in the future.
陈桂华. 2010. 光学遥感影像阴影与2008年汶川地震同震地表变形的影像识别[J]. 地震地质,32(1):107–114. doi: 10.3969/j.issn.0253-4967.2010.01.011
|
Chen G H. 2010. Interpretational characteristics of optical remote sensing image for the co-seismic surface deformation of the 2008 Wenchuan earthquake and its relationship with imaging[J]. Seismology and Geology,32(1):107–114 (in Chinese).
|
陈桂华,闵伟,宋方敏,焦德成,许洪泰. 2011. 从1786年磨西地震看地震地表破裂带在不同地貌区的保存[J]. 地震地质,33(4):804–817. doi: 10.3969/j.issn.0253-4967.2011.04.006
|
Chen G H,Min W,Song F M,Jiao D C,Xu H T. 2011. Preservation of co-seismic surface rupture in different geomorphological settings from the study of the 1786 Moxi earthquake[J]. Seismology and Geology,33(4):804–817 (in Chinese).
|
陈杰,陈宇坤,丁国瑜,王赞军,田勤俭,尹功明,单新建,王志才. 2004. 2001年昆仑山口西MS8.1地震地表同震位移分布特征[J]. 地震地质,26(3):378–392.
|
Chen J,Chen Y K,Ding G Y,Wang Z J,Tian Q J,Yin G M,Shan X J,Wang Z C. 2004. Surficial slip distribution and segmentation of the 426-km-long surface rupture of the 14 November,2001,MS8.1 earthquake on the east Kunlun fault,Northern Tibetan Plateau,China[J]. Seismology and Geology,26(3):378–392 (in Chinese).
|
付碧宏,时丕龙,张之武. 2008. 四川汶川MS8.0大地震地表破裂带的遥感影像解析[J]. 地质学报,82(12):1679–1687.
|
Fu B H,Shi P L,Zhang Z W. 2008. Spatial characteristics of the surface rupture produced by the MS8.0 Wenchuan earthquake using high-resolution remote sensing imagery[J]. Acta Geologica Sinica,82(12):1679–1687 (in Chinese).
|
刘静,徐晶,偶奇,韩龙飞,王子君,邵志刚,张培震,姚文倩,王鹏. 2023. 关于1920年海原大地震震级高估的讨论[J]. 地震学报,45(4):579–596.
|
Liu J,Xu J,Ou Q,Han L F,Wang Z J,Shao Z G,Zhang P Z,Yao W Q,Wang P. 2023. Discussion on the overestimated magnitude of the 1920 Haiyuan earthquake[J]. Acta Seismologica Sinica,45(4):579–596 (in Chinese).
|
梅安新,彭望琭,秦其明,刘慧平. 2001. 遥感导论[M]. 北京:高等教育出版社:1−324.
|
Mei A X,Peng W L,Qin Q M,Liu H P. 2001. An Introduction to Remote Sensing[M]. Beijing:Higher Education Press:1−324 (in Chinese).
|
青海省地震局,中国地震局地壳应力研究所. 1999. 东昆仑活动断裂带[M]. 北京:地震出版社:127−154.
|
Qinghai Earthquake Administration,Institute of Crustal Stress,China Earthquake Administration. 1999. Eastern Kunlun Active Fault Zone[M]. Beijing:Seismological Press:127−154 (in Chinese).
|
魏永明,李剑南,陈玉,高锦风. 2021. 不同类型发震断层的同震地表破裂光学遥感特征研究[J]. 第四纪研究,41(6):1513–1531.
|
Wei Y M,Li J N,Chen Y,Gao J F. 2021. Research on optical remote sensing characteristics of coseismic surface rupture of different types of seismogenic faults[J]. Quaternary Sciences,41(6):1513–1531 (in Chinese).
|
徐锡伟,陈文彬,于贵华,马文涛,戴华光,张志坚,陈永明,何文贵,王赞军,党光明. 2002. 2001年11月14日昆仑山库赛湖地震(MS8.1)地表破裂带的基本特征[J]. 地震地质,24(1):1–13.
|
Xu X W,Chen W B,Yu G H,Ma W T,Dai H G,Zhang Z J,Chen Y M,He W G,Wang Z J,Dang G M. 2002. Characteristic features of the surface ruptures of the Hoh Sai Hu (Kunlunshan) earthquake (MS8.1),Northern Tibetan Plateau,China[J]. Seismology and Geology,24(1):1–13 (in Chinese).
|
闫世勇. 2009. 遥感在汶川地震地质灾害评估中的应用[J]. 河北工程大学学报(自然科学版),26(1):76–80. doi: 10.3969/j.issn.1673-9469.2009.01.020
|
Yan S Y. 2009. Remote sensing application in the geologic disaster evaluation of Wenchuan earthquake[J]. Journal of Hebei University of Engineering (Natural Science Edition),26(1):76–80 (in Chinese).
|
赵瑞斌,李军,向志勇,葛鸣,罗刚. 2002. 昆仑山口西8.1级地震地表破裂带西段考察[J]. 内陆地震,16(2):175–179. doi: 10.16256/j.issn.1001-8956.2002.02.016
|
Zhao R B,Li J,Xiang Z Y,Ge M,Luo G. 2002. Expedition on the west segment of the surface rupture zone of the MS8.1 earthquake in the West of Kunlun Mountain Pass[J]. Inland Earthquake,16(2):175–179 (in Chinese).
|
中国航天科技集团有限公司. 2022.中国资源卫星应用中心数据服务平台[DB/OL]
2022−01−30]. https://data.cresda.cn/#/home
|
China Aerospace Science and Technology Corporation. 2022.China Center for Resources Satellite Data and Application [DB/OL].[2022−01−30]. https://data.cresda.cn/#/home (in Chinese).
|
Antolik M,Abercrombie R E,Ekström G. 2004. The 14 November 2001 Kokoxili (Kunlunshan),Tibet,earthquake:Rupture transfer through a large extensional step-over[J]. Bull Seismol Soc Am,94(4):1173–1194. doi: 10.1785/012003180
|
Avouac J P,Tapponnier P. 1993. Kinematic model of active deformation in central Asia[J]. Geophys Res Lett,20(10):895–898. doi: 10.1029/93GL00128
|
Crippen R E. 1992. Measurement of subresolution terrain displacements using SPOT panchromatic imagery[J]. Episodes,15(1):56–61. doi: 10.18814/epiiugs/1992/v15i1/009
|
Fu B H,Awata Y,Du J G,Ninomiya Y,He W G. 2005. Complex geometry and segmentation of the surface rupture associated with the 14 November 2001 great Kunlun earthquake,northern Tibet,China[J]. Tectonophysics,407(1/2):43–63.
|
King G,Klinger Y,Bowman D,Tapponnier P. 2005. Slip-partitioned surface breaks for the MW7.8 2001 Kokoxili earthquake,China[J]. Bull Seismol Soc Am,95(2):731–738. doi: 10.1785/0120040101
|
Klinger Y,Xu X W,Tapponnier P,Van der Woerd J,Lasserre C,King G. 2005. High-resolution satellite imagery mapping of the surface rupture and slip distribution of the MW~7.8,14 November 2001 Kokoxili earthquake,Kunlun Fault,Northern Tibet,China[J]. Bull Seismol Soc Am,95(5):1970–1987. doi: 10.1785/0120040233
|
Li H B,van der Woerd J,Tapponnier P,Klinger Y,Qi X X,Yang J S,Zhu Y T. 2005. Slip rate on the Kunlun Fault at Hongshui Gou,and recurrence time of great events comparable to the 14/11/2001,MW~7.9 Kokoxili earthquake[J]. Earth Planet Sci Lett,237(1/2):285–299.
|
Lin A M,Kikuchi M,Fu B H. 2003. Rupture segmentation and process of the 2001 MW7.8 central Kunlun,China,earthquake[J]. Bull Seismol Soc Am,93(6):2477–2492. doi: 10.1785/0120020179
|
McCalpin J P. 2009. Paleoseismology[M]. 2nd ed. Burlington:Academic Press:1−613.
|
Meyer B,Tapponnier P,Bourjot L,Métivier F,Gaudemer Y,Peltzer G,Guo S M,Chen Z T. 1998. Crustal thickening in Gansu-Qinghai,lithospheric mantle subduction,and oblique,strike-slip controlled growth of the Tibet plateau[J]. Geophys J Int,135(1):1–47. doi: 10.1046/j.1365-246X.1998.00567.x
|
Michel R,Avouac J P,Taboury J. 1999. Measuring ground displacements from SAR amplitude images:Application to the Landers earthquake[J]. Geophys Res Lett,26(7):875–878. doi: 10.1029/1999GL900138
|
National Aeronautics and Space Administration. 2022.Alaska Satellite Facility Distributed Active Archive Centers [DB/OL]. [2022−01−30]. https://search.asf.alaska.edu/.
|
Tocheport A,Rivera L,van der Woerd J. 2006. A study of the 14 November 2001 Kokoxili earthquake:History and geometry of the rupture from Teleseismic data and field observations[J]. Bull Seismol Soc Am,96(5):1729–1741. doi: 10.1785/0120050200
|
United States Geological Survey. 2021.USGS Earth Explorer [DB/OL].[2021−09−30]. https://earthexplorer.usgs.gov/.
|
van der Woerd J,Ryerson F J,Tapponnier P,Meriaux A S,Gaudemer Y,Meyer B,Finkel R C,Caffee M W,Zhao G G,Xu Z Q. 2000. Uniform slip-rate along the Kunlun fault:Implications for seismic behaviour and large-scale tectonics[J]. Geophys Res Lett,27(16):2353–2356. doi: 10.1029/1999GL011292
|
Xu X W,Chen W B,Ma W T,Yu G H,Chen G H. 2002. Surface rupture of the Kunlunshan earthquake (MS8.1),northern Tibetan Plateau,China[J]. Seismolog Res Lett,73(6):884–892. doi: 10.1785/gssrl.73.6.884
|
Xu X W,Yu G H,Klinger Y,Tapponnier P,van der Woerd J. 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (MW7.8),northern Tibetan Plateau,China[J]. J Geophys Res:Solid Earth,111(B5):B05316.
|
Xu X W,Yu G H,Ma W T,Klinger Y,Tapponnier P. 2008. Rupture behavior and deformation localization of the Kunlunshan earthquake (MW7.8) and their tectonic implications[J]. Science China:Earth Science,51(10):1361–1374. doi: 10.1007/s11430-008-0099-z
|
Zhang P Z,Shen Z K,Wang M,Gan W J,Bürgmann R,Molnar P,Wang Q,Niu Z J,Sun J Z,Wu J C,Sun H R,You X Z. 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology,32(9):809–812. doi: 10.1130/G20554.1
|
Zhao Qingxu, Wang Yanwei, Mo Hongyan, Cao Zhenzhong. 2024: Rapid magnitude estimation based on multi-input Gaussian process regression. Acta Seismologica Sinica, 46(5): 806-824. DOI: 10.11939/jass.20220223 | |
Wu Yifeng, Tang Fangtou, Jiang Xudong. 2024: Seismogenic structure of the earthquake surface rupture zone along the Maisu fault. Acta Seismologica Sinica, 46(5): 751-766. DOI: 10.11939/jass.20220225 | |
Dai Danqing, Yang Zhigao, Sun li. 2023: Rupture process of the MS6.9 Menyuan,Qinghai, earthquake on January 8,2022. Acta Seismologica Sinica, 45(5): 814-822. DOI: 10.11939/jass.20220032 | |
Wang Long, Liu Aiwen, Li Xiangxiu, Fan Xiaoqing, Zhang Libao, Wang Yu. 2022: Estimation of average displacement of fault surface co-seismic dislocations. Acta Seismologica Sinica, 44(5): 845-852. DOI: 10.11939/jass.20220122 | |
Wang Pingchuan, Zhang Yong, Feng Wanpeng. 2021: Fault parameters and rupture process of the Jinghe MS6.6 earthquake in 2017. Acta Seismologica Sinica, 43(2): 137-151. DOI: 10.11939/jass.20200057 | |
Liu Chao, Lei Qiyun, Yu Sihan, Yang Shun, Wang Yin. 2021: Using UAV photogrammetry technology to extract the quantitative parameters of earthquake surface rupture zone:A case study of the southern Zhongwei M7½ earthquake in 1709. Acta Seismologica Sinica, 43(1): 113-123. DOI: 10.11939/jass.20200039 | |
Meng Yafei, Meng Qingyan, Zhou Shijian, Zhang Ying. 2020: Extraction and analysis of seismic thermal anomalies in Xinjiang based on robust satellite techniques. Acta Seismologica Sinica, 42(2): 205-215. DOI: 10.11939/jass.20190117 | |
Ji Zhanbo, Zhao Cuiping, Wang Qiong, Li Zhihai, Wang Haitao. 2014: Source rupture process of Yutian, Xinjiang, MS7.3 earthquake on 21 March 2008. Acta Seismologica Sinica, 36(3): 339-349. DOI: 10.3969/j.issn.0253-3782.2014.03.001 | |
Liu Mingjun, Wang Fuyun, Jia Shixu, Han Yanjie, Li Xuemin, Feng Jianlin, Sun Hong, Xin Hailiang, Zhang Jianshi, Tao Hong, Dai Aopeng, Sun Yin, Wang Chong. 2014: Jianganlin surface fracture induced by 2013 Lushan MS7.0 earthquake. Acta Seismologica Sinica, 36(1): 129-138. DOI: 10.3969/j.issn.0253-3782.2014.01.011. | |
Zhang Lifen, Yao Yunsheng. 2013: Review on numerical simulation of dynamic rupture process of earthquake source. Acta Seismologica Sinica, 35(4): 604-615. DOI: 10.3969/j.issn.0253-3782.2013.04.014 |
1. |
Yu Li,Yuebing Wang,Lijiang Zhao,Hongbo Shi,Pingping Wang. Kinematic deformation and intensity assessment of the 2021 Maduo M_S7.4 earthquake in Qinghai revealed by high-frequency GNSS. Geodesy and Geodynamics. 2024(03): 230-240 .
![]() |
|
2. |
宫悦,龙锋,赵敏,杨鹏,王宇玺,梁明剑,乔慧珍,王宇航. 2022年6月10日四川马尔康M_S6.0震群序列时空演化特征. 地震学报. 2024(02): 173-191 .
![]() | |
3. |
杨晨艺,石富强,季灵运,杨宜海,苏利娜,杨敏,郑怡. 2013年岷县漳县M_S6.6地震和2017年九寨沟M_S7.0地震震前地球物理观测异常空间分布机理分析. 地震学报. 2024(02): 307-326 .
![]() | |
4. |
王莹,金昭娣,赵韬. 2022年四川马尔康6.0级震群序列震源机制特征分析. 地震研究. 2024(03): 379-390 .
![]() | |
5. |
朱家正,孙玉军,谢志远,吴刚. 四川大岗山水库蓄水对2022年泸定M_S6.8地震及余震的影响. 地质力学学报. 2024(02): 363-376 .
![]() | |
6. |
冯锐. 魏晋·说说地震活动性——漫步地震五千年(7). 地震科学进展. 2024(05): 359-371 .
![]() | |
7. |
郑文俊,彭慧,刘兴旺,张竹琪,张冬丽,魏拾其,王旭龙. 鄂尔多斯活动地块边界带15000年以来强震活动与现今大地震空区. 科学通报. 2024(18): 2632-2647 .
![]() | |
8. |
李兵,郭啟良,姜大伟,丁立丰,王建新,许俊闪,王显军. 汶川和芦山地震前后浅部应力对深部应力的响应及地震危险性分析. 地质学报. 2023(02): 339-348 .
![]() | |
9. |
宋程,张永仙,周少辉,毕金孟,徐小远. 2021年玛多M_S7.4地震的PI热点特征回溯性预测研究. 地震研究. 2023(02): 226-236 .
![]() | |
10. |
梁明剑,周文英,董云,廖程,左洪,陈翰,赵国华. 巴颜喀拉块体内部NW向主要断裂研究新进展. 四川地震. 2023(01): 12-17 .
![]() | |
11. |
董金元,周晓成,李营,李静超. 2021年青海玛多M_W7.4地震地表破裂带CO_2脱气特征. 第四纪研究. 2023(02): 485-493 .
![]() | |
12. |
王博,崔凤珍,刘静,周永胜,徐胜,邵延秀. 玛多M_S7.4地震断层土壤气特征与地表破裂的相关性. 地震地质. 2023(03): 772-794 .
![]() | |
13. |
张致伟,龙锋,石富强,路茜,杨宜海,杨星,王迪,祁玉萍,杨鹏. 2022年6月1日四川芦山M_S6.1地震的发震构造与力学机制探讨. 地球物理学报. 2023(10): 4095-4110 .
![]() | |
14. |
黄伟亮,张家乐,项闻,杨虔灏. 晚第四纪以来巴塘断裂的活动特征及滑动速率. 地震地质. 2023(06): 1265-1285 .
![]() | |
15. |
王阅兵,李瑜,蔡毅,蒋连江,师宏波,江在森,甘卫军. GNSS观测的2021年5月22日玛多M_S7.4地震同震位移及其约束反演的滑动破裂分布. 地球物理学报. 2022(02): 523-536 .
![]() | |
16. |
梁明剑,黄飞鹏,孙凯,张会平,吴微微,张佳伟,杜方,周文英. 巴颜喀拉块体内部五道梁-长沙贡玛断裂中段全新世活动及最新古地震证据. 地球科学. 2022(03): 766-778 .
![]() | |
17. |
Jihong LIU,Jun HU,Zhiwei LI,Zhangfeng MA,Lixin WU,Weiping JIANG,Guangcai FENG,Jianjun ZHU. Complete three-dimensional coseismic displacements due to the2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images. Science China(Earth Sciences). 2022(04): 687-697 .
![]() |
|
18. |
Jihong LIU,Jun HU,Zhiwei LI,Zhangfeng MA,Lixin WU,Weiping JIANG,Guangcai FENG,Jianjun ZHU. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images. Science China(Life Sciences). 2022(04): 687-697 .
![]() |
|
19. |
刘计洪,胡俊,李志伟,马张烽,吴立新,姜卫平,冯光财,朱建军. 融合哨兵1号和ALOS-2数据的2021年青海玛多地震高精度三维同震形变场研究. 中国科学:地球科学. 2022(05): 882-892 .
![]() | |
20. |
姚文倩,王子君,刘静,刘小利,韩龙飞,邵延秀,王文鑫,徐晶,秦可心,高云鹏,王焱,李金阳,曾宪阳. 2021年青海玛多M_W7.4地震同震地表破裂长度的讨论. 地震地质. 2022(02): 541-559 .
![]() | |
21. |
刘小利,夏涛,刘静,姚文倩,徐晶,邓德贝尔,韩龙飞,贾治革,邵延秀,王焱,乐子扬,高天琪. 2021年青海玛多M_W7.4地震分布式同震地表裂缝特征. 地震地质. 2022(02): 461-483 .
![]() | |
22. |
李兵,谢富仁,黄金水,徐锡伟,郭啟良,张广伟,许俊闪,王建新,姜大伟,王健,丁立丰. 龙门山断裂带大邑地震空区地应力状态与地震危险性. 中国科学:地球科学. 2022(07): 1409-1418 .
![]() | |
23. |
Bing LI,Furen XIE,Jinshui HUANG,Xiwei XU,Qiliang GUO,Guangwei ZHANG,Junshan XU,Jianxin WANG,Dawei JIANG,Jian WANG,Lifeng DING. In situ stress state and seismic hazard in the Dayi seismic gap of the Longmenshan thrust belt. Science China(Earth Sciences). 2022(07): 1388-1398 .
![]() |
|
24. |
Guanghao Ha,Jinrui Liu,Zhikun Ren,Xiaoxiao Zhu,Guodong Bao,Dengyun Wu,Zhiliang Zhang. The Interpretation of Seismogenic Fault of the Maduo Mw 7.3Earthquake, Qinghai Based on Remote Sensing Images——A Branch of the East Kunlun Fault System. Journal of Earth Science. 2022(04): 857-868 .
![]() |
|
25. |
韩明明,陈立春,曾蒂,李彦宝,梁明剑,高帅坡,王冬兵,罗亮. 鲜水河断裂带色拉哈段中谷村一带的最新地表破裂讨论. 地质力学学报. 2022(06): 969-980 .
![]() | |
26. |
杜航,杨云,郑江蓉,王俊,张扬,宫杰. 青海玛多M_S7.4地震前b值时空变化特征. 震灾防御技术. 2022(04): 691-700 .
![]() | |
27. |
李昭,付碧宏. 东昆仑断裂带玛沁—玛曲段晚第四纪构造活动特征的地貌响应定量研究. 地震地质. 2022(06): 1421-1447 .
![]() | |
28. |
Ruifang Yu,Xiao Hu,Ruizhi Wen. Preface to the special issue on ground motion input at dam sites and reservoir earthquakes. Earthquake Science. 2022(05): 311-313 .
![]() |
|
29. |
姜佳佳,冯建刚. 2017年九寨沟7.0级地震前应力状态及b值异常特征研究. 地震工程学报. 2021(03): 575-582 .
![]() | |
30. |
潘家伟,白明坤,李超,刘富财,李海兵,刘栋梁,Marie-Luce CHEVALIER,吴坤罡,王平,卢海建,陈鹏,李春锐. 2021年5月22日青海玛多M_S7.4地震地表破裂带及发震构造. 地质学报. 2021(06): 1655-1670 .
![]() | |
31. |
詹艳,梁明剑,孙翔宇,黄飞鹏,赵凌强,宫悦,韩静,李陈侠,张培震,张会平. 2021年5月22日青海玛多M_S7.4地震深部环境及发震构造模式. 地球物理学报. 2021(07): 2232-2252 .
![]() | |
32. |
李智敏,李文巧,李涛,徐岳仁,苏鹏,郭鹏,孙浩越,哈广浩,陈桂华,袁兆德,李忠武,李鑫,杨理臣,马震,姚生海,熊仁伟,张彦博,盖海龙,殷翔,徐玮阳,董金元. 2021年5月22日青海玛多M_S7.4地震的发震构造和地表破裂初步调查. 地震地质. 2021(03): 722-737 .
![]() | |
33. |
徐志国,梁姗姗,张广伟,梁建宏,邹立晔,李旭茂,陈彦含. 2021年5月22日青海玛多M_S7.4地震发震构造分析. 地球物理学报. 2021(08): 2657-2670 .
![]() | |
34. |
赵韬,王莹,马冀,邵若潼,徐一斐,胡景. 2021年青海玛多7.4级地震序列重定位和震源机制特征. 地震地质. 2021(04): 790-805 .
![]() | |
35. |
任晴晴,陆丽娜,钱小仕,赵宜宾. 巴颜喀拉地块及其周边地震危险性分析. 地震. 2021(03): 144-156 .
![]() | |
36. |
张志文,任俊杰,章小龙. 高精度无人机航测在2021年玛多7.4级地震地表破裂精细研究中的应用. 震灾防御技术. 2021(03): 437-447 .
![]() | |
37. |
盖海龙,姚生海,杨丽萍,亢太波,殷翔,陈庭,李鑫. 青海玛多“5·22”M_S7.4级地震的同震地表破裂特征、成因及意义. 地质力学学报. 2021(06): 899-912 .
![]() | |
38. |
姚生海,盖海龙,殷翔,李鑫. 青海玛多M_S7.4地震地表破裂带的基本特征和典型现象. 地震地质. 2021(05): 1060-1072 .
![]() | |
39. |
尹晓菲,张国民,邵志刚,王芃,孙鑫喆. 华北地区强震活动特点研究. 地震. 2020(01): 11-33 .
![]() | |
40. |
胡翔,白文科,董鑫. 四川省九寨沟县地震前后区域生态环境质量评价. 生态学杂志. 2020(03): 969-978 .
![]() | |
41. |
付平,张新辉,尹健民,韩晓玉,周春华. 龙门山断裂带中段及邻区构造变形特征及应力场演化的数值模拟研究. 地震研究. 2020(01): 28-36+207 .
![]() | |
42. |
万森林,张军龙,刘明军,贺为民,李海龙,郭长宝,李智敏. 岷山断块的发震构造与地震活动性分析. 地震. 2020(02): 49-70 .
![]() | |
43. |
张翼,唐姝娅,周妍,陈文捷. 四川地震应急指挥大厅综合调度平台设计与实现. 地震科学进展. 2020(01): 27-35 .
![]() | |
44. |
邵志刚,冯蔚,王芃,尹晓菲. 中国大陆活动地块边界带的地震活动特征研究综述. 地震地质. 2020(02): 271-282 .
![]() | |
45. |
徐旭,徐锦承,张伟. 2017年四川九寨沟M_s7.0地震及余震定位研究. 中国地震. 2020(02): 324-332 .
![]() | |
46. |
李莎,阎春恒,周斌,郭培兰,周军学. 2016年广西苍梧M_S5.4地震前地震活动图像演化特征. 华北地震科学. 2020(03): 19-26 .
![]() | |
47. |
唐小明,王晓琴,贺维,吴世磊,苏宇,陈涤非,鄢武先,邓东周. 九寨沟地震灾区珍稀保护动物受损栖息地维管植物区系组成及特征分析. 四川林业科技. 2020(06): 124-130 .
![]() | |
48. |
Feng Long,GuiXi Yi,SiWei Wang,YuPing Qi,Min Zhao. Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 M_S 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China. Earth and Planetary Physics. 2019(03): 253-267 .
![]() |