Loading [MathJax]/jax/output/SVG/jax.js
Zhang F,Han X M,Bao J Z,Yang X Z. 2025. Bayesian estimation of completeness magnitude in the Capital Circle Region. Acta Seismologica Sinica47(1):107−121. DOI: 10.11939/jass.20230140
Citation: Zhang F,Han X M,Bao J Z,Yang X Z. 2025. Bayesian estimation of completeness magnitude in the Capital Circle Region. Acta Seismologica Sinica47(1):107−121. DOI: 10.11939/jass.20230140

Bayesian estimation of completeness magnitude in the Capital Circle Region

More Information
  • Received Date: October 30, 2023
  • Revised Date: February 27, 2024
  • Accepted Date: February 28, 2024
  • Available Online: December 22, 2024
  • Earthquake catalog completeness, crucial for seismicity analyses, is defined by the completeness magnitude (MC): The lowest magnitude at which all earthquakes are reliably detected. Accurate MC estimation is essential for seismic hazard assessments and earthquake studies. Traditional methods often solely rely on the frequency-magnitude distribution (FMD) and Gutenberg-Richter (G-R) law, neglecting station coverage, making them unsuitable for regions with low seismicity and susceptible to the subjective selection of calculation parameters. This study utilizes the Bayesian magnitude of completeness (BMC) method to analyze the Capital Circle Region of China’s (37°N—42°N, 114°E—120°E) earthquake catalog from 2010 to 2023, a period marked by significant network upgrades. Initially, we assessed the overall catalog completeness from 1966 to 2023 using the maximum curvature (MAXC) method, and the results revealed improved monitoring capabilities, especially after 2010, with MC consistently between 0.5 and 1.5. Focusing on 2010—2023 (23546 events, 153 stations), we employed the BMC method with a two-step process: ① Optimizing spatial resolution and prior model parameters based on the relationship between MC and station density (distance to the k-th nearest station); ② Integrating prior information with observed MC values using Bayesian inference. Iterative optimization yielded the optimal scanning radius and prior MC model, from which assuming Gaussian-distributed errors, prior and likelihood distributions were derived, leading to a posterior MC estimate; the BMC method integrates station distribution priors with local MC observations, weighted by their uncertainties, enabling MC estimation in low-seismicity regions and reducing overall uncertainty. The optimized scanning radius R varied spatially, smaller in densely instrumented areas like Beijing. The prior model of Capital Circle Region differed significantly from that of Taiwan, highlighting the need for region-specific models. Posterior MC estimates from BMC showed reduced uncertainty compared to observed MC from MAXC, demonstrating the value of integrating station data. Results revealed spatially heterogeneous monitoring capabilities, with MC reaching 2.7 in regions with relatively weak monitoring capabilities. We compared BMC with three FMD-based methods MAXC, goodness-of-fit test (GFT), and median-based analysis of segment slope (MBASS) at varying radii (5—75 km). GFT yielded the most conservative estimates MC(GFT)>MC(MBASS)>MC(MAXC). Larger radii smoothed spatial variations and potentially overestimated MC in well-monitored areas, emphasizing the importance of careful radius selection. BMC, unlike probability-based magnitude of completeness (PMC), optimizes R and incorporates station, but does not account for variations among individual stations. PMC, while not reliant on the G-R model, has limitations due to its preset starting magnitude. Our findings show a significant improvement in the seismic network’s monitoring capabilities after 2010 compared to previous levels. The spatial MC variability highlights the importance of localized assessments for hazard analysis. This study demonstrates BMC’s efficacy for robust MC estimation, crucial for accurate seismic hazard characterization and mitigation strategies.

  • 蒋长胜,房立华,韩立波,王未来,郭路杰. 2015. 利用PMC方法评估地震台阵的地震检测能力:以西昌流动地震台阵为例[J]. 地球物理学报,58(3):832–843. doi: 10.6038/cjg20150313
    Jiang C S,Fang L H,Han L B,Wang W L,Guo L J. 2015. Assessment of earthquake detection capability for the seismic array:A case study of the Xichang seismic array[J]. Chinese Journal of Geophysics,58(3):832–843 (in Chinese).
    李智超,黄清华. 2014. 基于概率完备震级评估首都圈地震台网检测能力[J]. 地球物理学报,57(8):2584–2593. doi: 10.6038/cjg20140818
    Li Z C,Huang Q H. 2014. Assessment of detectability of the Capital-Circle Seismic Network by using the probability-based magnitude of completeness (PMC) method[J]. Chinese Journal of Geophysics,57(8):2584–2593 (in Chinese).
    刘芳,蒋长胜,张帆,杨彦明,梁莹,王磊,苗春兰. 2014. 内蒙古区域地震台网监测能力研究[J]. 地震学报,36(5):919–929.
    Liu F,Jiang C S,Zhang F,Yang Y M,Liang Y,Wang L,Miao C L. 2014. A study on detection capability of the Inner Mongolia regional seismic network[J]. Acta Seismologica Sinica,36(5):919–929 (in Chinese).
    刘瑞丰,吴忠良,阴朝民,陈运泰,庄灿涛. 2003. 中国地震台网数字化改造的进展[J]. 地震学报,25(5):535–540. doi: 10.3321/j.issn:0253-3782.2003.05.009
    Liu R F,Wu Z L,Yin C M,Chen Y T,Zhuang C T. 2003. Development of China digital seismological observational systems[J]. Acta Seismologica Sinica,25(5):535–540 (in Chinese).
    刘瑞丰,高景春,陈运泰,吴忠良,黄志斌,徐志国,孙丽. 2008. 中国数字地震台网的建设与发展[J]. 地震学报,30(5):533–539. doi: 10.3321/j.issn:0253-3782.2008.05.012
    Liu R F,Gao J C,Chen Y T,Wu Z L,Huang Z B,Xu Z G,Sun L. 2008. Construction and development of digital seismograph networks in China[J]. Acta Seismologica Sinica,30(5):533–539 (in Chinese).
    武敏捷,武安绪,龙锋,林向东,赵雯佳. 2013. 首都圈地震活动完整性震级时空分布特征研究[J]. 地震,33(3):98–106. doi: 10.3969/j.issn.1000-3274.2013.03.011
    Wu M J,Wu A X,Long F,Lin X D,Zhao W J. 2013. Temporal-spatial distribution characteristics of minimum magnitude of completeness in the capital region of China[J]. Earthquake,33(3):98–106 (in Chinese).
    周依,郭蕾,王亚玲. 2022. 首都圈地区中强地震前固体潮调制比特征分析[J]. 大地测量与地球动力学,42(11):1166–1170.
    Zhou Y,Guo L,Wang Y L. 2022. The characteristics of earth tide modulation ratio before moderate-strong earthquakes in the capital circle area of China[J]. Journal of Geodesy and Geodynamics,42(11):1166–1170 (in Chinese).
    Amorèse D. 2007. Applying a change-point detection method on frequency-magnitude distributions[J]. Bull Seismol Soc Am,97(5):1742–1749. doi: 10.1785/0120060181
    Cao A M,Gao S S. 2002. Temporal variation of seismic b‐values beneath northeastern Japan island arc[J]. Geophys Res Lett,29(9):1334.
    Feng Y,Mignan A,Sornette D,Li J W. 2022. Hierarchical Bayesian modeling for improved high‐resolution mapping of the completeness magnitude of earthquake catalogs[J]. Seismol Soc Am,93(4):2126–2137.
    Gomberg J. 1991. Seismicity and detection/location threshold in the southern Great Basin seismic network[J]. J Geophys Res:Solid Earth,96(B10):16401–16414. doi: 10.1029/91JB01593
    Gutenberg B,Richter C F. 1944. Frequency of earthquakes in California[J]. Bull Seismol Soc Am,34(4):185–188. doi: 10.1785/BSSA0340040185
    Habermann R E. 1987. Man-made changes of seismicity rates[J]. Bull Seismol Soc Am,77(1):141–159.
    Kværna T,Ringdal F. 1999. Seismic threshold monitoring for continuous assessment of global detection capability[J]. Bull Seismol Soc Am,89(4):946–959. doi: 10.1785/BSSA0890040946
    Marsan D,Daniel G. 2007. Measuring the heterogeneity of the coseismic stress change following the 1999 MW7.6 Chi‐Chi earthquake[J]. J Geophys Res:Solid Earth,112(B7):B07305.
    Mignan A,Werner M J,Wiemer S,Chen C C,Wu Y M. 2011. Bayesian estimation of the spatially varying completeness magnitude of earthquake catalogs[J]. Bull Seismol Soc Am,101(3):1371–1385. doi: 10.1785/0120100223
    Mignan A. 2012. Functional shape of the earthquake frequency‐magnitude distribution and completeness magnitude[J]. J Geophys Res:Solid Earth,117(B8):B08302.
    Mignan A,Jiang C,Zechar J D,Wiemer S,Wu Z,Huang Z. 2013. Completeness of the Mainland China earthquake catalog and implications for the setup of the China Earthquake Forecast Testing Center[J]. Bull Seismol Soc Am,103(2A):845–859. doi: 10.1785/0120120052
    Rydelek P A,Sacks I S. 1989. Testing the completeness of earthquake catalogues and the hypothesis of self-similarity[J]. Nature,337(6204):251–253. doi: 10.1038/337251a0
    Schorlemmer D,Woessner J. 2008. Probability of detecting an earthquake[J]. Bull Seismol Soc Am,98(5):2103–2117. doi: 10.1785/0120070105
    Wiemer S,Katsumata K. 1999. Spatial variability of seismicity parameters in aftershock zones[J]. J Geophys Res:Solid Earth,104(B6):13135–13151. doi: 10.1029/1999JB900032
    Wiemer S,Wyss M. 2000. Minimum magnitude of completeness in earthquake catalogs:Examples from Alaska,the western United States,and Japan[J]. Bull Seismol Soc Am,90(4):859–869. doi: 10.1785/0119990114
    Woessner J,Wiemer S. 2005. Assessing the quality of earthquake catalogues:Estimating the magnitude of completeness and its uncertainty[J]. Bull Seismol Soc Am,95(2):684–698. doi: 10.1785/0120040007
    Wyss M,Shimazaki K,Ito A. 1999. Introduction:Seismicity Patterns,Their Statistical Significance and Physical Meaning[M]. Basel:Birkhäuser Basel:203−207.
    Zúñiga F R,Wyss M. 1995. Inadvertent changes in magnitude reported in earthquake catalogs:Their evaluation through b-value estimates[J]. Bull Seismol Soc Am,85(6):1858–1866. doi: 10.1785/BSSA0850061858
  • Related Articles

Catalog

    Article views (95) PDF downloads (33) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return