Xie Z D,Yu X W,Zhang W B. 2025. Dynamic source rupture process of the 2022 Menyuan MW6.6 earthquake,Qinghai Province. Acta Seismologica Sinica47(1):21−36. DOI: 10.11939/jass.20230144
Citation: Xie Z D,Yu X W,Zhang W B. 2025. Dynamic source rupture process of the 2022 Menyuan MW6.6 earthquake,Qinghai Province. Acta Seismologica Sinica47(1):21−36. DOI: 10.11939/jass.20230144

Dynamic source rupture process of the 2022 Menyuan MW6.6 earthquake,Qinghai Province

More Information
  • Received Date: November 12, 2023
  • Revised Date: January 04, 2024
  • Accepted Date: January 07, 2024
  • On January 8, 2022, a significant earthquake with a magnitude of 6.6 struck Menyuan, Qinghai, which resulted in substantial surface damage. To investigate the geological context behind the strong surface rupture generated by the Menyuan earthquake and its impact on the inhibition of stress release in the eastern section of the Tuolaishan fault, the spectral element method was employed in this study to simulate the dynamic rupture process of the branching fault on actual terrain. The dynamic rupture simulation revealed that the rupture was initiated bilaterally along an upward direction from the initial rupture point. Under the influence of a high-speed P-wave anomaly located above the source area, the rupture displayed a non-continuous pattern. With the progression of the rupture into the eastern section of Tuolaishan, a significantly abrupt decrease occurred in both slip rate and slip. Furthermore, the area with a slip rate of around 3.6 m/s near the surface of the Earth could be considered as a strong motion generation zone. The combined influence of these factors, along with their high-frequency radiation, might have played a pivotal role in the pronounced coseismic surface deformation during the MW6.6 earthquake in Menyuan. As calculated from the dynamic simulation results, the spatial distribution of strain suggested that the southwestern side of the eastern section of Tuolaishan and the northeastern side of the western section of Lenglongling experienced predominantly tensile stress, with corresponding areas subjected to compression. This observation aligns with the focal mechanism solution and the geological context of the northeastern margin of the Qinghai-Tibet Plateau, where the direction of principal compressive stress transitions from north-south to southwest-northeast. Furthermore, the dynamic rupture process in the eastern section of Tuolaishan was strongly inhibited by the rupture of the branching fault. This led to incomplete stress release and a residual seismic magnitude of approximately MW5.1. Under the trigger of Coulomb stress from the Menyuan earthquake, further rupture in the future is possible.

  • 董森,张海明. 2019. 角度对于Y型分叉断层自发破裂传播过程的影响[J]. 地球物理学报,62(11):4156–4169. doi: 10.6038/cjg2019M0572
    Dong S,Zhang H M. 2019. Effects of angles on dynamic ruptures on Y-type branched faults[J]. Chinese Journal of Geophysics,62(11):4156–4169 (in Chinese).
    冯万鹏,何骁慧,张逸鹏,房立华,Samsonov S,张培震. 2023. 2022年青海门源MW6.6地震的发震断层及孕震构造模式[J]. 科学通报,68(2/3):254–270.
    Feng W P,He X H,Zhang Y P,Fang L H,Samsonov S,Zhang P Z. 2023. Seismic faults of the 2022 MW6.6 Menyuan,Qinghai earthquake and their implication for the regional seismogenic structures[J]. Chinese Science Bulletin,68(2/3):254–270 (in Chinese).
    韩帅,吴中海,高扬,卢海峰. 2022. 2022年1月8日青海门源MS6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报,28(2):155–168.
    Han S,Wu Z H,Gao Y,Lu H F. 2022. Surface rupture investigation of the 2022 Menyuan MS6.9 Earthquake,Qinghai,China:Implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk[J]. Journal of Geomechanics,28(2):155–168 (in Chinese).
    李振洪,韩炳权,刘振江,张苗苗,余琛,陈博,刘海辉,杜静,张双成,朱武. 2022. InSAR数据约束下2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报•信息科学版,47(6):887–897.
    Li Z H,Han B Q,Liu Z J,Zhang M M,Yu C,Chen B,Liu H H,Du J,Zhang S C,Zhu W. 2022. Source parameters and slip distributions of the 2016 and 2022 Menyuan,Qinghai earthquakes constrained by InSAR observations[J]. Geomatics and Information Science of Wuhan University,47(6):887–897 (in Chinese).
    李智敏,盖海龙,李鑫,袁道阳,谢虹,姜文亮,李永生,苏琦. 2022. 2022年青海门源MS6.9级地震发震构造和地表破裂初步调查[J]. 地质学报,96(1):330–335.
    Li Z M,Gai H L,Li X,Yuan D Y,Xie H,Jiang W L,Li Y S,Su Q. 2022. Seismogenic fault and coseismic surface deformation of the Menyuan MS6.9 earthquake in Qinghai,China[J]. Acta Geologica Sinica,96(1):330–335 (in Chinese).
    梁宽,何仲太,姜文亮,李永生,刘泽民. 2022. 2022年1月8日青海门源MS6.9地震的同震地表破裂特征[J]. 地震地质,44(1):256–278. doi: 10.3969/j.issn.0253-4967.2022.01.016
    Liang K,He Z T,Jiang W L,Li Y S,Liu Z M. 2022. Surface rupture characteristics of the Menyuan MS6.9 earthquake on January 8,2022,Qinghai Province[J]. Seismology and Geology,44(1):256–278 (in Chinese).
    梁姗姗,雷建设,徐志国,邹立晔,刘敬光. 2017. 2016年1月21日青海门源MS6.4余震序列重定位和主震震源机制解[J]. 地球物理学报,60(6):2091–2103. doi: 10.6038/cjg20170606
    Liang S S,Lei J S,Xu Z G,Zou L Y,Liu J G. 2017. Relocation of the aftershock sequence and focal mechanism solutions of the 21 January 2016 Menyuan,Qinghai,MS6.4 earthquake[J]. Chinese Journal of Geophysics,60(6):2091–2103 (in Chinese).
    刘雷,朱良玉,季灵运,庄文泉,刘传金. 2023. 2022年门源MS6.9地震前祁连—海原断裂带闭锁程度及地震危险性研究[J]. 地震研究,46(1):88–98.
    Liu L,Zhu L Y,Ji L Y,Zhuang W Q,Liu C J. 2023. Study of the locking degree of the Qilian−Haiyuan fault zone before the 2022 Menyuan MS6.9 earthquake and its seismic risk in future[J]. Journal of Seismological Research,46(1):88–98 (in Chinese).
    潘家伟,李海兵,Chevalier M L,刘栋梁,李超,刘富财,吴琼,卢海建,焦利青. 2022. 2022年青海门源MS6.9地震地表破裂带及发震构造研究[J]. 地质学报,96(1):215–231. doi: 10.3969/j.issn.0001-5717.2022.01.018
    Pan J W,Li H B,Chevalier M L,Liu D L,Li C,Liu F C,Wu Q,Lu H J,Jiao L Q. 2022. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake,Qinghai Province,China[J]. Acta Geologica Sinica,96(1):215–231 (in Chinese).
    孙安辉,高原,赵国峰,任超,梁姗姗. 2022. 2022年1月8日青海门源6.9级地震的震源区结构特征和b值意义初探[J]. 地球物理学报,65(3):1175–1183. doi: 10.6038/cjg2022Q0030
    Sun A H,Gao Y,Zhao G F,Ren C,Liang S S. 2022. Seismic structure and b-value in the focal area of the 8th January 2022 Menyuan,Qinghai MS6.9 earthquake[J]. Chinese Journal of Geophysics,65(3):1175–1183 (in Chinese).
    万永革,许鑫,黄少华,崔华伟,冯淦,李枭. 2022. P波极性资料确定的2022青海门源MS6.9地震序列震源机制及应力场[J]. 地震工程学报,44(3):670–679.
    Wan Y G,Xu X,Huang S H,Cui H W,Feng G,Li X. 2022. Focal mechanisms and stress field of the 2022 Menyuan,Qinghai MS6.9 earthquake sequence determined by P-wave polarity data[J]. China Earthquake Engineering Journal,44(3):670–679 (in Chinese).
    王琼,肖卓,武粤,李抒予,高原. 2022. 2022年1月8日青海门源MS6.9地震深部构造背景浅析[J]. 地震学报,44(2):211–222. doi: 10.11939/jass.20220010
    Wang Q,Xiao Z,Wu Y,Li S Y,Gao Y. 2022. The deep tectonic background of the MS6.9 Menyuan earthquake on January 8,2022 in Qinghai Province[J]. Acta Seismologica Sinica,44(2):211–222 (in Chinese).
    吴建平,黄媛,张天中,明跃红,房立华. 2009. 汶川MS8.0级地震余震分布及周边区域P波三维速度结构研究[J]. 地球物理学报,52(2):320–328.
    Wu J P,Huang Y,Zhang Z T,Ming Y H,Fang L H. 2009. Aftershock distribution of the MS8.0 Wenchuan earthquake and three dimensional P-wave velocity structure in and around source region[J]. Chinese Journal of Geophysics,52(2):320–328 (in Chinese).
    谢张迪,于湘伟,章文波. 2024. 2018年日本北海道MW6.6地震震源动力学破裂过程[J]. 地球物理学报,67(8):2972–2989. doi: 10.6038/cjg2023Q0942
    Xie Z D,Yu X W,Zhang W B. 2024. Dynamic rupture process of the 2018 Hokkaido MW6.6 earthquake,Japan[J]. Chinese Journal of Geophysics,67(8):2972–2989 (in Chinese).
    徐纪人,姚立珣,汪进. 1986. 1986年8月26日门源6.4级地震及其强余震的震源机制解[J]. 西北地震学报,8(4):82–84.
    Xu J R,Yao L X,Wang J. 1986. Earthquake source mechanisms of Menyuan earthquake (MS=6.4 on Aug.26,1986) and its strong aftershocks[J]. Northwestern Seismological Journal,8(4):82–84 (in Chinese).
    徐锡伟,韩竹军,杨晓平,张世民. 2016. 中国及邻近地区地震构造图[M]. 北京:地震出版社.
    Xu X W,Han Z J,Yang X P,Zhang S M. 2016. Seismic Tectonic Map of China and Its Adjacent Areas[M]. Beijing:Seismological Press (in Chinese).
    许英才,郭祥云,冯丽丽. 2022. 2022年1月8日青海门源MS6.9 地震序列重定位和震源机制解研究[J]. 地震学报,44(2):195–210. doi: 10.11939/jass.20220008
    Xu Y C,Guo X Y,Feng L L. 2022. Relocation and focal mechanism solutions of the MS6.9 Menyuan earthquake sequence on January 8,2022 in Qinghai Province[J]. Acta Seismologica Sinica,44(2):195–210 (in Chinese).
    薛善余,谢虹,袁道阳,李智敏,苏瑞欢,文亚猛. 2022. 2022门源MS6.9地震地表破裂带震害特征调查[J]. 地震工程学报,44(2):458–467.
    Xue S Y,Xie H,Yuan D Y,Li Z M,Su R H,Wen Y M. 2022. Seismic disaster characteristics of the surface rupture of Menyuan MS6.9 earthquake in 2022[J]. China Earthquake Engineering Journal,44(2):458–467 (in Chinese).
    尹晓菲,王芃,张伟,邵志刚,曹文忠,熊仁伟. 2022. 2022年1月8日青海门源MS6.9地震强地面运动模拟及烈度分布估计[J]. 地震学报,44(2):237–244. doi: 10.11939/jass.20220011
    Yin X F,Wang P,Zhang W,Shao Z G,Cao W Z,Xiong R W. 2022. Strong ground motion simulation and intensity distribution estimation for the MS6.9 Menyuan,Qinghai,earthquake on 8 January 2022[J]. Acta Seismologica Sinica,44(2):237–244 (in Chinese).
    尹欣欣,邱江涛,李敏娟,许康生,张波,张胜霞. 2022. 2022年门源MS6.9地震震区三维速度与发震机制研究[J]. 地震工程学报,44(2):360–369.
    Yin X X,Qiu J T,Li M J,Xu K S,Zhang B,Zhang S X. 2022. Three-dimensional velocity structure and seismogenic mechanism of Menyuan MS6.9 earthquake in 2022[J]. China Earthquake Engineering Journal,44(2):360–369 (in Chinese).
    余鹏飞,陈威,乔学军,赵斌,李刚,熊维. 2022. 基于多源SAR数据的2022年门源MS6.9地震同震破裂模型反演研究[J]. 武汉大学学报•信息科学版,47(6):898–906.
    Yu P F,Chen W,Qiao X J,Zhao B,Li G,Xiong W. 2022. Slip model of the 2022 Menyuan MS6.9 earthquake constrained by mulit-source SAR data[J]. Geomatics and Information Science of Wuhan University,47(6):898–906 (in Chinese).
    张丽芬. 2016. 不同因素对于断层动力学破裂过程复杂性的影响研究[D]. 北京:中国地震局地球物理研究所:49−53.
    Zhang L F. 2016. Influences of Different Factors on the Complexities of Fault Dynamic Rupture Propagation[D]. Beijing:Institute of Geophysics,China Earthquake Administration :49−53(in Chinese).
    赵凌强,孙翔宇,詹艳,杨海波,王庆良,郝明,刘雪华. 2022. 2022年1月8日青海门源MS6.9地震孕震环境和冷龙岭断裂分段延展特征[J]. 地球物理学报,65(4):1536–1546. doi: 10.6038/cjg2022Q0051
    Zhao L Q,Sun X Y,Zhan Y,Yang H B,Wang Q L,Hao M,Liu X H. 2022. The seismogenic model of the Menyuan MS6.9 earthquake on January 8,2022,Qinghai Province and segmented extensional characteristics of the Lenglongling fault[J]. Chinese Journal of Geophysics,65(4):1536–1546 (in Chinese).
    中国地震局工程力学研究所强震观测组. 2022. 2022年01月08日青海门源6.9级地震仪器烈度分布图[EB/OL]. [2022−01−20]. https://mp.weixin.qq.com/s/IGp1dw7KfFY3PiwWT2WY6A.
    Strong Motion Observation Group,Institute of Engineering Mechanics,China Earthquake Administration. 2022. Instrument intensity distribution map of the Menyuan,Qinghai MS6.9 earthquake on January 8th,2022[EB/OL]. [2022−01−20]. https://mp.weixin.qq.com/s/IGp1dw7KfFY3PiwWT2WY6A (in Chinese).
    中国地震台网中心. 2022. 青海海北州门源县6.9级地震[EB/OL]. [2022−01−10]. https://news.ceic.ac.cn/CC20220108014528.html.
    China Earthquake Networks Center. 2022. MS6.9 Menyuan earthquake in Haibei Prefecture,Qinghai Province[EB/OL]. [2022−01−10]. https://news.ceic.ac.cn/CC20220108014528.html (in Chinese).
    左可桢,陈继锋. 2018. 门源地区地壳三维体波速度结构及地震重定位研究[J]. 地球物理学报,61(7):2788–2801. doi: 10.6038/cjg2018L0537
    Zuo K Z,Chen J F. 2018. 3D body-wave velocity structure of crust and relocation of earthquakes in the Menyuan area[J]. Chinese Journal of Geophysics,61(7):2788–2801 (in Chinese).
    Aki K,Richards P G. 1980. Quantitative Seismology:Theory and Methods[M]. San Francisco:W. H. Freeman & Co:28−30.
    Andrews D J. 1974. Evaluation of static stress on a fault plane from a Green's function[J]. Bull Seismol Soc Am,64(6):1629–1633. doi: 10.1785/BSSA0640061629
    Andrews D J. 1976. Rupture velocity of plane strain shear cracks[J]. J Geophys Res,81(32):5679–5687. doi: 10.1029/JB081i032p05679
    Andrews D J. 1978. Coupling of energy between tectonic processes and earthquakes[J]. J Geophys Res:Solid Earth,83(B5):2259–2264. doi: 10.1029/JB083iB05p02259
    Andrews D J. 1980. A stochastic fault model:1. Static case[J]. J Geophys Res:Solid Earth,85(B7):3867–3877. doi: 10.1029/JB085iB07p03867
    Aochi H,Madariaga R. 2003. The 1999 İzmit,Turkey,earthquake:Nonplanar fault structure,dynamic rupture process,and strong ground motion[J]. Bull Seismol Soc Am,93(3):1249–1266. doi: 10.1785/0120020167
    Bouchon M. 1997. The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data[J]. J Geophys Res:Solid Earth,102(B6):11731–11744. doi: 10.1029/97JB00623
    Carlson J M,Langer J S. 1989. Mechanical model of an earthquake fault[J]. Phys Rev A,40(11):6470–6484. doi: 10.1103/PhysRevA.40.6470
    Das S,Aki K. 1977. Fault plane with barriers:A versatile earthquake model[J]. J Geophys Res,82(36):5658–5670. doi: 10.1029/JB082i036p05658
    Day S M. 1982. Three-dimensional simulation of spontaneous rupture:The effect of nonuniform prestress[J]. Bull Seismol Soc Am,72(6A):1881–1902. doi: 10.1785/BSSA07206A1881
    Dieterich J H. 1978. Time-dependent friction and the mechanics of stick-slip[J]. Pure Appl Geophys,116(4):790–806.
    Dieterich J H. 1979. Modeling of rock friction:1. Experimental results and constitutive equations[J]. J Geophys Res:Solid Earth,84(B5):2161–2168. doi: 10.1029/JB084iB05p02161
    Fan L P,Li B R,Liao S R,Jiang C,Fang L H. 2022. High-precision relocation of the aftershock sequence of the January 8,2022,MS6.9 Menyuan earthquake[J]. Earthquake Science,35(2):138–145. doi: 10.1016/j.eqs.2022.01.021
    Galvez P,Petukhin A,Irikura K,Somerville P. 2020. Dynamic source model for the 2011 Tohoku earthquake in a wide period range combining slip reactivation with the short-period ground motion generation process[J]. Pure Appl Geophys,177(5):2143–2161. doi: 10.1007/s00024-019-02210-7
    Galvez P,Ampuero J P,Dalguer L A,Somala S N,Nissen-Meyer T. 2014. Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M9 Tohoku earthquake[J]. Geophys J Int,198(2):1222–1240. doi: 10.1093/gji/ggu203
    Gan W J,Zhang P Z,Shen Z K,Niu Z J,Wang M,Wan Y G,Zhou D M,Cheng J. 2007. Present day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. J Geophys Res:Solid Earth,112(B8):B08416.
    GCMT. 2022. Global CMT Catalog Search[EB/OL]. [2022−06−30]. https://www.globalcmt.org/CMTsearch.html.
    Guatteri M. 2001. Inferring Fault Rupture Dynamics from Strong Motion Data[D]. Palo Alto:Stanford University.
    Haimson B C. 1978. Crustal stress in the Michigan basin[J]. J Geophys Res:Solid Earth,83(B12):5857–5863. doi: 10.1029/JB083iB12p05857
    Harris R A. 1998. Introduction to special section:Stress triggers,stress shadows,and implications for seismic hazard[J]. J Geophys Res:Solid Earth,103(B10):24347–24358. doi: 10.1029/98JB01576
    Harris R A,Barall M,Archuleta R,Dunham E,Aagaard B,Ampuero J P,Bhat H,Cruz-Atienza V,Dalguer L,Dawson P,Day S,Duan B,Ely G,Kaneko Y,Kase Y,Lapusta N,Liu Y,Ma S,Oglesby D,Olsen K,Pitarka A,Song S,Templeton E. 2009. The SCEC/USGS dynamic earthquake rupture code verification exercise[J]. Seismol Res Lett,80(1):119–126. doi: 10.1785/gssrl.80.1.119
    Ida Y. 1972. Cohesive force across the tip of a longitudinal-shear crack and Griffith's specific surface energy[J]. J Geophys Res,77(20):3796–3805. doi: 10.1029/JB077i020p03796
    Ide S,Takeo M. 1997. Determination of constitutive relations of fault slip based on seismic wave analysis[J]. J Geophys Res:Solid Earth,102(B12):27379–27391. doi: 10.1029/97JB02675
    Kaneko Y,Lapusta N,Ampuero J P. 2008. Spectral element modeling of spontaneous earthquake rupture on rate and state faults:Effect of velocity-strengthening friction at shallow depths[J]. J Geophys Res:Solid Earth,113(B9):B09316.
    Komatitsch D,Vilotte J P. 1998. The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bull Seismol Soc Am,88(2):368–392. doi: 10.1785/BSSA0880020368
    Komatitsch D,Tromp J. 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophys J Int,139(3):806–822. doi: 10.1046/j.1365-246x.1999.00967.x
    Komatitsch D,Tromp J. 2002a. Spectral-element simulations of global seismic wave propagation: Ⅰ . Validation[J]. Geophys J Int,149(2):390–412. doi: 10.1046/j.1365-246X.2002.01653.x
    Komatitsch D,Tromp J. 2002b. Spectral-element simulations of global seismic wave propagation: Ⅱ . Three-dimensional models,oceans,rotation and self-gravitation[J]. Geophys J Int,150(1):303–318. doi: 10.1046/j.1365-246X.2002.01716.x
    Komatitsch D,Tsuboi S,Tromp J. 2005. The spectral-element method in seismology[M]//Seismic Earth:Array Analysis of Broadband Seismograms. Washington:American Geophysical Union:205.
    Liao J T,Liang C T,Wang C L,Cao F H,Ye C M,Yang Y H. 2022. Source model for the 2022 Qinghai Menyuan MS6.9 earthquake based on D-InSAR[J]. Front in Earth Science,10:948661. doi: 10.3389/feart.2022.948661
    Lin J,Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults[J]. J Geophys Res:Solid Earth,109(B2):B02303.
    Madariaga R. 1977. High-frequency radiation from crack (stress drop) models of earthquake faulting[J]. Geophys J Int,51(3):625–651. doi: 10.1111/j.1365-246X.1977.tb04211.x
    Madariaga R,Olsen K B. 2000. Criticality of rupture dynamics in 3-D[M]//Microscopic and Macroscopic Simulation:Towards Predictive Modelling of the Earthquake Process. Basel:Birkhäuser:1981−2001.
    Mikumo T,Olsen K B,Fukuyama E,Yagi Y. 2003. Stress-breakdown time and slip-weakening distance inferred from slip-velocity functions on earthquake faults[J]. Bull Seismol Soc Am,93(1):264–282. doi: 10.1785/0120020082
    Miyake H,Iwata T,Irikura K. 2003. Source characterization for broadband ground-motion simulation:Kinematic heterogeneous source model and strong motion generation area[J]. Bull Seismol Soc Am,93(6):2531–2545. doi: 10.1785/0120020183
    Olsen K B,Madariaga R,Archuleta R J. 1997. Three-dimensional dynamic simulation of the 1992 Landers earthquake[J]. Science,278(5339):834–838. doi: 10.1126/science.278.5339.834
    Pulido N,Irikura K. 2000. Estimation of dynamic rupture parameters from the radiated seismic energy and apparent stress[J]. Geophys Res Lett,27(23):3945–3948. doi: 10.1029/2000GL011658
    Ripperger J,Mai P M. 2004. Fast computation of static stress changes on 2D faults from final slip distributions[J]. Geophys Res Lett,31(18):L18610.
    Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res:Solid Earth,88(B12):10359–10370. doi: 10.1029/JB088iB12p10359
    Toda S,Stein R S,Richards-Dinger K,Bozkurt S B. 2005. Forecasting the evolution of seismicity in southern California:Animations built on earthquake stress transfer[J]. J Geophys Res:Solid Earth,110(B5):B05S16.
    Wang D,Kawakatsu H,Mori J,Ali B,Ren Z,Shen X. 2016. Backprojection analyses from four regional arrays for rupture over a curved dipping fault:the MW7.7 24 September 2013 Pakistan earthquake[J]. J Geophys Res:Solid Earth,121(3):1948–1961.
    Weng H H,Ampuero J P. 2019. The dynamics of elongated earthquake ruptures[J]. J Geophys Res:Solid Earth,124(8):8584–8610. doi: 10.1029/2019JB017684
    Xu J K,Zhang H M,Chen X F. 2015. Rupture phase diagrams for a planar fault in 3-D full-space and half-space[J]. Geophys J Int,202(3):2194–2206. doi: 10.1093/gji/ggv284
    Yamashita T,Umeda Y. 1994. Earthquake rupture complexity due to dynamic nucleation and interaction of subsidiary faults[J]. Pure Appl Geophys,143(1):89–116.
    Yang H F,Wang D,Guo R M,Xie M Y,Zang Y,Wang Y,Yao Q,Cheng C,An Y R,Zhang Y Y. 2022. Rapid report of the 8 January 2022 MS6.9 Menyuan earthquake,Qinghai,China[J]. Earthquake Research Advances,2(1):100113. doi: 10.1016/j.eqrea.2022.100113
    Yoshida K,Petukhin A,Miyakoshi K,Hada K,Okazaki A. 2012. Source process and constitutive relations of the 2011 Tohoku earthquake inferred from near-field strong-motion data[C]//Proceedings of the 15th World Conference on Earthquake Engineering. Lisbon:Curran Associates, Inc:3876.
    Zhang W B,Iwata T,Irikura K,Sekiguchi H,Bouchon M. 2003. Heterogeneous distribution of the dynamic source parameters of the 1999 Chi-Chi,Taiwan,earthquake[J]. J Geophys Res:Solid Earth,108(B5):2232.
    Zhang W B,Iwata T,Irikura K,Pitarka A,Sekiguchi H. 2004. Dynamic rupture process of the 1999 Chi-Chi,Taiwan,earthquake[J]. Geophys Res Lett,31(10):L10605.
    Zoback M D,Healy J H,Roller J C. 1977. Preliminary stress measurements in central California using the hydraulic fracturing technique[J]. Pure Appl Geophys,115(1):135–152.
  • Cited by

    Periodical cited type(4)

    1. 郑雪刚,马学军,沙木哈尔·叶尔肯,赵鹏毕. 利用远震深度震相pP测定玛多M_S7.4地震震源深度. 内陆地震. 2024(04): 307-314 .
    2. Biao Yang,YanBin Wang,Li Zhao,LiMing Yang,ChengNing Sha. Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications. Earth and Planetary Physics. 2021(03): 296-304 .
    3. 徐志国,梁姗姗,张广伟,梁建宏,邹立晔,李旭茂,陈彦含. 2021年5月22日青海玛多M_S7.4地震发震构造分析. 地球物理学报. 2021(08): 2657-2670 .
    4. 鲁志楠,边银菊,王婷婷,刘森. 利用Lg波Q值反双台层析成像方法研究青藏高原南部地区的地壳衰减. 地震学报. 2021(03): 287-302+260 . 本站查看

    Other cited types(1)

Catalog

    Article views (72) PDF downloads (37) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return