Wang P,Bi B,Sun D J,Shao Y Q,Liu F. 2025. Temporal and spatial characteristics of small earthquakes in Huoshan area,Anhui Province. Acta Seismologica Sinica47(1):93−106. DOI: 10.11939/jass.20230149
Citation: Wang P,Bi B,Sun D J,Shao Y Q,Liu F. 2025. Temporal and spatial characteristics of small earthquakes in Huoshan area,Anhui Province. Acta Seismologica Sinica47(1):93−106. DOI: 10.11939/jass.20230149

Temporal and spatial characteristics of small earthquakes in Huoshan area,Anhui Province

More Information
  • Received Date: November 22, 2023
  • Revised Date: March 31, 2024
  • Accepted Date: April 02, 2024
  • Available Online: January 02, 2025
  • The Huoshan area is located in the eastern part of the Chinese mainland, at the intersection of the Qinling-Dabie orogenic belt and the Tanlu seismic belt. The faults in the area are strongly active and earthquakes occur frequently. The main faults developed are the NE-trending Late Pleistocene active fault Luo’erling-Tudiling fault, the nearly EW-trending Mozitan-Xiaotian fault and Meishan-Longhekou fault. The NE-trending Luo’erling-Tudiling fault is the main earthquake-controlling and seismogenic structure. It cuts across the above-mentioned nearly EW-trending faults and passes through the North Dabie block, the North Huaiyang block and the Hefei basin from south to north. This region has always been a key monitoring area for earthquake prediction in the eastern part of China, often referred to as a “window” for studying stress field variations and seismic activity in the East China region. Acquiring a high-precision micro-seismic catalog for the Huoshan region is of significant importance in delineating fault morphology and seismic prediction.

    In this study, the seismic processing system RISP (real-time intelligent seismic processing system) based on the artificial intelligence algorithm PhaseNet was used to scan the continuous waveform data of Huoshan area from 2020 to 2022, ranging from (30.2°N—32.4°N, 115°E—117.6°E). There are 21 seismic stations within 120 km of the Huoshan earthquake swarm. The seismic catalog was screened by parameters such as signal-to-noise ratio and phase (accuracy) probability, and an automatic catalog containing 3839 earthquakes was obtained. The number is three times that of the manual catalog.

    The RISP uses deep learning method to detect earthquakes, which includes phase picking, association, location and magnitude measurement. The system currently lacks the capability to identify non-natural earthquakes and locate tele-seismic events, leading to cases of non-natural earthquakes and misidentification of distant earthquakes as local events in the earthquake catalog. In addition to screening the catalogs, this study combined manual and automatic catalogs for relocation based on local monitoring capabilities: the manual catalog was used for earthquakes above the monitoring capacity, while the automatic catalog was used for smaller events. The combined catalog contained 3825 earthquakes, 14 fewer than the automatic catalog. The double-difference earthquake location and imaging method tomoDD is a relative location method that significantly improves the accuracy of earthquake location. After relocation using tomoDD, 3785 earthquakes were obtained, with 40 earthquakes unable to be located due to not meeting the criteria. The RISP system exhibits a 95% earthquake identification matching rate in the Huoshan region, providing earthquake catalogs of each magnitude range, particularly enhancing the seismic monitoring capabilities for micro-earthquakes in the ML−1.1—0.0, addressing the lack of sub-magnitude 0 earthquakes in the manual catalog.

    Two seismic belts appear at the intersection of the Luo’erling-Tudiling fault and the Mozitan-Xiaotian fault. Their dominant distribution direction is consistent with the strike of the fault. The NE-trending belt BB′ is parallel to the Luo’erling-Tudiling fault and is distributed on its west side, whose length is about 16 km. The earthquakes are concentrated about 3—3.5 km wide. The focal depth is between 4—12 km. The belts are distributed in two sections, and their shapes are different. The cross-section of the vertical seismic belt shows a slightly gentler dip in the southwest segment compared to the northeast segment, but both are nearly vertical. The Luo’erling-Tudiling fault strikes northeast, with a northwest dip angle ranging from 64° to 84°. Field fault geomorphological evidence indicates that the most recent activity of the fault occurred from the late Middle Pleistocene to the early Late Pleistocene, predominantly characterized by dextral strike-slip extensional faults. The focal mechanism of the M4.3 earthquake that occurred on this fault in 2014 indicates a dextral strike-slip fault. This seismic belt may be its branch fracture, and the two converge together in the deep. The northwest-trending belt DD′ consists of several small clusters, concentrated within 4 km wide along the Mozitan-Xiaotian fault, extending approximately 20 km. The belt indicates the recent activity of the fault in this part. The cross-section of the DD′ belt shows a dip angle of approximately 65° in the northwest segment and around 78° in the southeast segment, both dip northeast.

    Regarding the seismogenic structures in the Huoshan region, Cui et al2020) revealed through deep electromagnetic surveys that the Luo’erling-Tudiling fault serves as the seismogenic structure, utilizing weak zones formed by early activity along the Mozitan-Xiaotian fault, where fluid from the highly conductive layer below the fault weakens the fault, leading to the occurrence of seismic swarms in these zones of weakness. Xu et al2022) used precise location results to reveal three nearly parallel seismic bands, suggesting a strike-slip and extensional fault system formed under the combined effects of the right-lateral Tanlu fault zone and the south segment of the Shangcheng-Macheng fault zone. Our results reveal two intersecting seismic belts, indicating significant activity at the intersection of the two faults. During the two-year study period, no significant seismic events were recorded in Huoshan region, thus no clear seismic sequences occurred. However, during a ten-day period from February 1 to 10, 2021, a total of 641 earthquakes were recorded, starting at 11 km on the BB′ belt, then shifting to the northeast at 12 km, and finally developing towards the southwest at 9 km, showing distinct characteristics of seismic activity migration, which may be influenced by fluid.

  • 陈宇卫,张军,庆梅,王行舟,章兵. 2007. “霍山地震窗”小震序列运动学参数时变特征研究[J]. 地震,27(1):26–32.
    Chen Y W,Zhang J,Qing M,Wang X Z,Zhang B. 2007. Study on the time-varying characteristics of kinematic parameters of small earthquake sequence in “Huoshan Seismic Window”[J]. Earthquake,27(1):26–32 (in Chinese).
    崔腾发,陈小斌,詹艳,赵凌强,刘钟尹. 2020. 安徽霍山地震区深部电性结构和发震构造特征[J]. 地球物理学报,63(1):256–269.
    Cui T F,Chen X B,Zhan Y,Zhao L Q,Liu Z Y. 2020. Characteristics of deep electrical structure and seismogenic structure beneath Anhui Huoshan earthquake area[J]. Chinese Journal of Geophysics,63(1):256–269 (in Chinese).
    邓山泉,章文波,于湘伟,宋倩,王小娜. 2020. 利用区域双差层析成像方法研究川滇南部地壳结构特征[J]. 地球物理学报,63(10):3653–3668.
    Deng S Q,Zhang W B,Yu X W,Song Q,Wang X N. 2020. Analysis on crustal structure characteristics of southern Sichuan-Yunnan by regional double-difference seismic tomography[J]. Chinese Journal of Geophysics,63(10):3653–3668 (in Chinese).
    黄显良,郁建芳,戚浩,张炳,夏仕安,韩成成. 2016. 安徽霍山窗中小地震活动与精定位研究[J]. 地震工程学报,38(2):236–241.
    Huang X L,Yu J F,Qi H,Zhang B,Xia S A,Han C C. 2016. Precise relocation of small medium earthquakes in Anhui “Huoshan Seismic Window”[J]. China Earthquake Engineering Journal,38(2):236–241 (in Chinese).
    李浩民. 2018. 安徽霍山地区主要控震构造特征及地震活动性分析[D]. 北京:中国地质大学(北京):23−25.
    Li H M. 2018. Main Seismic Structure Characteristics and Seismicity Analysis of Huoshan Area in Anhui Province[D]. Beijing:China University of Geosciences (Beijing):23−25 (in Chinese).
    廖诗荣,张红才,范莉苹,李珀任,黄玲珠,房立华,秦敏. 2021. 实时智能地震处理系统研发及其在2021年云南漾濞MS6.4地震中的应用[J]. 地球物理学报,64(10):3632–3645.
    Liao S R,Zhang H C,Fan L P,Li B R,Huang L Z,Fang L H,Qin M. 2021. Development of a real-time intelligent seismic processing system and its application in the 2021 Yunnan Yangbi MS6.4 earthquake[J]. Chinese Journal of Geophysics,64(10):3632–3645 (in Chinese).
    刘芳,孙冬军,周一剑,朱艾斓,魏薇,朴健. 2023. 基于自动检测方法的福建地区断裂带地震活动性研究[J]. 地震学报,45(3):538–549.
    Liu F,Sun D J,Zhou Y J,Zhu A L,Wei W,Piao J. 2023. Seismicity characteristics of fault zones in Fujian area based on automatic seismic detection method[J]. Acta Seismologica Sinica,45(3):538–549 (in Chinese).
    刘泽民,黄显良,倪红玉,张炳,骆佳骥,王琐琛. 2015. 2014年4月20日霍山MS4.3地震发震构造研究[J]. 地震学报,37(3):402–410.
    Liu Z M,Huang X L,Ni H Y,Zhang B,Luo J J,Wang S C. 2015. Seismogenic structure of the 20 April 2014 Huoshan MS4.3 earthquake in Auhui region[J]. Acta Seismologica Sinica,37(3):402–410 (in Chinese).
    缪鹏,王行舟,洪德全,李玲利,王俊. 2014. “霍山震情窗”动力学背景及预测意义分析[J]. 中国地震,30(4):534–542.
    Miao P,Wang X Z,Hong D Q,Li L L,Wang J. 2014. Dynamic backgrounds of the “Huoshan Seismic Window” and its implications[J]. Earthquake Research in China,30(4):534–542 (in Chinese).
    邵永谦,彭钊,王成睿,毕波,周冬瑞. 2024. 基于CCFE自动构建安徽霍山地区微震目录[J]. 大地测量与地球动力学,44(4):436–440.
    Shao Y Q,Peng Z,Wang C R,Bi B,Zhou D R. 2024. Automatic construction of microseismic catalog in Huoshan area of Anhui based on CCFE[J]. Journal of Geodesy and Geodynamics,44(4):436–440 (in Chinese).
    疏鹏,路硕,方良好,郑颖平,宋方敏. 2018. 落儿岭—土地岭断裂几何结构及晚第四纪活动特征初探[J]. 震灾防御技术,13(1):87–97.
    Shu P,Lu S,Fang L H,Zheng Y P,Song F M. 2018. Preliminary study on geometry structure and activity features of Luo'erling−Tudiling fault in Late Quaternary[J]. Technology for Earthquake Disaster Prevention,13(1):87–97 (in Chinese).
    苏金波,刘敏,张云鹏,王伟涛,李红谊,杨军,李孝宾,张淼. 2021. 基于深度学习构建2021年5月21日云南漾濞MS6.4地震序列高分辨率地震目录[J]. 地球物理学报,64(8):2647–2656.
    Su J B,Liu M,Zhang Y P,Wang W T,Li H Y,Yang J,Li X B,Zhang M. 2021. High resolution earthquake catalog building for the 21 May 2021 Yangbi,Yunnan,MS6.4 earthquake sequence using deep-learning phase picker[J]. Chinese Journal of Geophysics,64(8):2647–2656 (in Chinese).
    王长在,吴建平,杨婷,王未来,范莉苹,房立华. 2018. 太原盆地及周边地区双差层析成像[J]. 地球物理学报,61(3):963–974.
    Wang C Z,Wu J P,Yang T,Wang W L,Fan L P,Fang L H. 2018. Crustal structure beneath the Taiyuan Basin and adjacent areas revealed by double-difference tomography[J]. Chinese Journal of Geophysics,61(3):963–974 (in Chinese).
    许鑫,万永革,冯淦,李枭,刘泽民,何金. 2022. 安徽霍山地区丛集地震事件揭示的三条地震断面及其滑动性质研究[J]. 地球物理学报,65(5):1688–1700.
    Xu X,Wan Y G,Feng G,Li X,Liu Z M,He J. 2022. Study on three seismic fault segments and their sliding properties revealed by clustered seismic events in Huoshan area,Anhui Province[J]. Chinese Journal of Geophysics,65(5):1688–1700 (in Chinese).
    颜利君,刘媛,廖诗荣,庞瑶,唐淋,房立华. 2022. 2022年6月10日四川马尔康地震序列实时智能检测结果分析与研究[J]. 地震工程学报,44(6):1450–1458.
    Yan L J,Liu Y,Liao S R,Pang Y,Tang L,Fang L H. 2022. Real-time automatic detection results for the Maerkang,Sichuan earthquake sequence on June 10,2022[J]. China Earthquake Engineering Journal,44(6):1450–1458 (in Chinese).
    赵明,陈石. 2021. 基于深度学习的地震检测模型在区域台网的泛化性研究[J]. 地震,41(1):166–179.
    Zhao M,Chen S. 2021. The generalization ability research of deep learning algorithm in seismic phase detection of regional seismic network[J]. Earthquake,41(1):166–179 (in Chinese).
    Fang L H,Li Z F. 2023. Preface to the special issue of artificial intelligence in seismology[J]. Earthquake Science,36(2):81–83. doi: 10.1016/j.eqs.2023.03.003
    Gutenberg B,Richter C F. 1944. Frequency of earthquakes in California[J]. Bull Seismol Soc Am,34(4):185–188. doi: 10.1785/BSSA0340040185
    Han S C,Zhang H J,Xin H L,Shen W S,Yao H J. 2022. USTClitho2.0:Updated unified seismic tomography models for continental China lithosphere from joint inversion of body‐wave arrival times and surface-wave dispersion data[J]. Seismol Soc Am,93(1):201–215.
    Huang Y F,Li H Y,Ma Y H,Ma J X. 2023. Long-term spatial-temporal evolution of seismicity of the 2010 MS7.1 Yushu,Qinghai,China earthquake[J]. IEEE Trans Geosci Remote Sens,61:5900209.
    Liu M,Zhang M,Zhu W Q,Ellsworth W L,Li H Y. 2020. Rapid characterization of the July 2019 Ridgecrest,California,earthquake sequence from raw seismic data using machine‐learning phase picker[J]. Geophys Res Lett,47(4):e2019GL086189. doi: 10.1029/2019GL086189
    Lomax A,Michelini A,Curtis A. 2009. Earthquake location,direct,global-search methods[M]//Encyclopedia of Complexity and Systems Science. New York:Springer:2449−2473.
    Park Y,Mousavi S M,Zhu W Q,Ellsworth W L,Beroza G C. 2020. Machine‐learning‐based analysis of the guy‐greenbrier,Arkansas earthquakes:A tale of two sequences[J]. Geophys Res Lett,47(6):e2020GL087032. doi: 10.1029/2020GL087032
    Ross Z E,Idini B,Jia Z,Stephenson O L,Zhong M Y,Wang X,Zhan Z W,Simons M,Fielding E J,Yun S H,Hauksson E,Moore A W,Liu Z and Jung J. 2019. Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence[J]. Science,366(6463):346–351. doi: 10.1126/science.aaz0109
    Tamaribuchi K. 2018. Evaluation of automatic hypocenter determination in the JMA unified catalog[J]. Earth Planets Space,70:141. doi: 10.1186/s40623-018-0915-4
    Wessel P,Smith W H F. 1998. New,improved version of generic mapping tools released[J]. Eos Trans Am Geophys Union,79(47):579–579. doi: 10.1029/98EO00426
    Wiemer S,Wyss M. 2000. Minimum magnitude of completeness in earthquake catalogs:Examples from Alaska,the western United States,and Japan[J]. Bull Seismol Soc Am,90(4):859–869.
    Yang W C. 2003. Deep structures of the east Dabie ultrahigh-pressure metamorphic belt,East China[J]. Science China:Earth Sciences,46(6):612–624. doi: 10.1007/BF02984539
    Zhang H J,Thurber C H. 2003. Double-difference tomography:The method and its application to the Hayward fault,California[J]. Bull Seismol Soc Am,93(5):1875–1889. doi: 10.1785/0120020190
    Zhu W Q,Beroza G C. 2019. PhaseNet:A deep-neural-network-based seismic arrival-time picking method[J]. Geophys J Int,216(1):261–273.
    Zhou Y J,Ghosh A,Fang L H,Yue H,Zhou S Y,Su Y J. 2021. A high-resolution seismic catalog for the 2021 MS6.4/MW6.1 Yangbi earthquake sequence,Yunnan,China:Application of AI picker and matched filter[J]. Earthquake Science,34(5):390–398. doi: 10.29382/eqs-2021-0031
  • Related Articles

  • Cited by

    Periodical cited type(29)

    1. 陆天然,段梦乔,李子怡,周连庆. 人工智能地震分类研究进展综述. 地球物理学进展. 2025(01): 25-47 .
    2. 孟娟,李亚南,高强. 基于S谱能量曲线与卷积神经网络的天然地震与爆破事件分类识别. 地震学报. 2025(02): 232-241 . 本站查看
    3. 李鸿儒,李夕海,牛超,张云,刘继昊,谭笑枫. 基于GA-XGBoost的天然地震与爆破的小样本分类. 地震学报. 2025(02): 221-231 . 本站查看
    4. 杨祖鉴,田宵,陈奕冲,甘兆龙,刘安福,裴重茂,张中将. 基于迁移学习的天然地震和爆破事件识别在美国加州和犹他州的应用. 工程地球物理学报. 2025(02): 172-182 .
    5. 彭登靖,王泽兰,马敏伟,马达. 昭通巡龙强夯土非天然地震记录特征及识别研究. 地震科学进展. 2024(03): 187-192 .
    6. 贾漯昭,孟令媛,闫睿. 深度学习在地震监测预报中的应用进展. 地震研究. 2024(03): 336-349 .
    7. 王婷婷,边银菊,任梦依,杨千里,侯晓琳. 地震事件分类识别软件. 地震. 2024(02): 104-119 .
    8. 彭登靖. 基于卷积神经网络的天然地震和非天然地震识别. 高原地震. 2024(02): 36-40 .
    9. 沈婕,朱景宝,缪发军,宋晋东,李山有. 基于残差神经网络的天然地震与非天然地震信号分类. 地震工程与工程振动. 2024(05): 13-25 .
    10. 曾晓燕,邱强,蒋策,周少辉,梁明,熊成. 基于卷积神经网络的地震与爆破识别模型及其在广东地区的初步应用. 地震学报. 2024(06): 1002-1013 . 本站查看
    11. 谭笑枫,李夕海,牛超,曾小牛,李鸿儒,刘天佑. 基于MVIDA算法和MS-SE-Res Net的次声事件分类方法(英文). Applied Geophysics. 2024(04): 667-679+878-879 .
    12. 张帆,杨晓忠,王树波. 基于LSTM神经网络的地震事件分类. 计算机应用与软件. 2023(04): 75-79 .
    13. 章宇成,华卫. 白鹤滩水库库区基于深度学习的震相拾取与地震定位. 地震. 2023(01): 137-151 .
    14. 王泽兰. 昭通巡龙测震台强夯土事件与微震波形特征分析. 高原地震. 2023(03): 16-20+34 .
    15. 邵永谦,王国成,彭钊,于海英,王鹏,王成睿. 基于标准时频变换的上海地区地震与爆破识别. 华北地震科学. 2022(02): 48-55 .
    16. 田宵,汪明军,张雄,王向腾,盛书中,吕坚. 基于多输入卷积神经网络的天然地震和爆破事件识别. 地球物理学报. 2022(05): 1802-1812 .
    17. 郑杰,文畅,谢凯,盛冠群. 参数优选残差网络下的井震联合反演方法. 电子测量技术. 2022(12): 168-174 .
    18. 吴涛,庞聪,江勇,丁炜,廖成旺. 基于随机子空间和Ada Boost集成学习的地震事件性质辨识研究. 地球物理学进展. 2022(03): 981-988 .
    19. 刘涛,戴志军,陈苏,傅磊. 基于深度学习的地震震级分类. 地震学报. 2022(04): 656-664 . 本站查看
    20. 孟娟,张家声,李亚南. 基于改进EWT和LogitBoost集成分类器的地震事件分类识别算法. 地震工程学报. 2022(05): 1233-1242 .
    21. 隗永刚,蒋长胜. 人工智能技术在地震减灾应用中的研究进展. 地球物理学进展. 2021(02): 516-524 .
    22. 程先琼,蒋科植. 基于深度降噪自编码神经网络的中国大陆地壳厚度反演. 地震学报. 2021(01): 34-47+136 . 本站查看
    23. 谭笑枫,李夕海,刘继昊,李广帅,于晓彤. 基于一维卷积神经网络的化爆和地震次声分类. 应用声学. 2021(03): 457-467 .
    24. 周少辉,蒋海昆,曲均浩,李健,郭宗斌,郑旭. 爆破、塌陷识别研究进展综述. 中国地震. 2021(02): 508-522 .
    25. 唐婷婷,余思,陈江贻. 天然地震与人工爆破特征识别研究综述. 地震科学进展. 2021(09): 385-394 .
    26. 张帆,杨晓忠,吴立飞,韩晓明,王树波. 基于短时傅里叶变换和卷积神经网络的地震事件分类. 地震学报. 2021(04): 463-473+533 . 本站查看
    27. Ce Jiang,Lihua Fang,Liping Fan,Boren Li. Comparison of the earthquake detection abilities of PhaseNet and EQTransformer with the Yangbi and Maduo earthquakes. Earthquake Science. 2021(05): 425-435 .
    28. 高家乙,刘晓锋,闫睿. 河南平顶山平煤矿区天然地震、爆破、塌陷时频特征分析. 地震地磁观测与研究. 2020(03): 67-74 .
    29. 杨千里,王婷婷,边银菊. 基于广义S变换的地震与爆炸识别. 地震学报. 2020(05): 613-628+508 . 本站查看

    Other cited types(12)

Catalog

    Article views (92) PDF downloads (31) Cited by(41)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return