Li Q,Pu Y W,Wang Y,Liu Y C. 2025. Present-day crustal vertical deformation characteristics of North China from dense GNSS observations. Acta Seismologica Sinica47(2):169−181. DOI: 10.11939/jass.20230153
Citation: Li Q,Pu Y W,Wang Y,Liu Y C. 2025. Present-day crustal vertical deformation characteristics of North China from dense GNSS observations. Acta Seismologica Sinica47(2):169−181. DOI: 10.11939/jass.20230153

Present-day crustal vertical deformation characteristics of North China from dense GNSS observations

More Information
  • Received Date: December 03, 2023
  • Revised Date: March 19, 2024
  • Available Online: March 21, 2025
  • The North China region, which is characterized as a typical intracontinental extensional rift zone and an area with strong seismic activity, exhibits notable regional differences in vertical deformation patterns. These disparities are attributed to the combined tectonic effects of the subduction of the Pacific Plate to the east and the collision of the Indian Plate to the west, along with excessive groundwater extraction. To quantitatively analyze the vertical deformation characteristics of this region, we collected 1406 GPS observation datasets covering a twenty-year period from 1999 to 2019, and then processed the data by using a unified high-precision processing method. As a result, we acquired a vertical deformation velocity field with high spatial resolution.

    The results reveal distinct deformation patterns across different geological units: The North China plain and Huaihe plain mainly experience subsidence, with maximum subsidence rates of approximately 70 mm/a and 50 mm/a, respectively. In contrast, the Taihangshan, Lüliangshan, Sulu orogenic belt, and Yanshan exhibit uplift patterns with rates ranging from 0.1 mm/a to 4 mm/a. Notably, the vertical deformation patterns from GNSS stations in the Shanxi rift zone and Taihangshan areas present an intriguing dichotomy. We also noticed that, some GNSS stations on soil show subsidence, while those on bedrock show uplift, suggesting that the observed subsidence is likely attributable to excessive groundwater extraction rather than tectonic movements.

    This study is the first to integrate meteorological GNSS observation data into vertical deformation research, significantly improving the spatial resolution of vertical deformation velocity fields in the North China Craton. The most pronounced subsidence appears in North China plain, forming a NE-SW trending subsidence belt that coincides with fault orientations. However, due to the lack of GNSS bedrock stations in these areas, accurately quantifying the respective contributions of tectonic and non-tectonic to the observed vertical deformation remains challenging and warrants further investigation.

    The Shanxi Plateau, Yanshan, and Sulu orogenic belt predominantly exhibit uplift tendencies. The data from the GNSS stations on bedrock confirm that the Shanxi Graben does not possess tectonic-induced subsidence characteristics. The localized subsidence observed at certain stations within the graben is likely influenced by groundwater extraction effects on soil-based GNSS stations, rather than being indicative of actual tectonic movement.

    This comprehensive analysis provides valuable insights into the intricate interaction between tectonic forces and anthropogenic activities in shaping the vertical deformation patterns of the North China region, offering a robust foundation for subsequent geodynamic studies and land subsidence monitoring in this tectonically active area.

  • 韩竹军,徐杰,冉勇康,陈立春,杨晓平. 2003. 华北地区活动地块与强震活动[J]. 中国科学:D 辑,43(增刊):108–118.
    Han Z J,Xu J,Ran Y K,Chen L C,Yang X P. 2003. Active blocks and strong seismic activity in North China region[J]. Science in China:Series D,46(S2):153–167 (in Chinese). doi: 10.1360/03dz0012
    罗三明,单新建,朱文武,杜凯夫,万文妮,梁洪宝,刘志广. 2014. 多轨PSInSAR监测华北平原地表垂直形变场[J]. 地球物理学报,57(10):3129–3139. doi: 10.6038/cjg20141004
    Luo S M,Shan X J,Zhu W W,Du K F,Wan W N,Liang H B,Liu Z G. 2014. Monitoring vertical ground deformation in the North China plain using the multitrack PSInSAR technique[J]. Chinese Journal of Geophysics,57(10):3129–3139 (in Chinese).
    马宏生,张国民,刘杰,李丽,陈化然. 2003. 中国大陆及其邻区强震活动与活动地块关系研究[J]. 地学前缘,10(增刊):74–80.
    Ma H S,Zhang G M,Liu J,Li L,Chen H R. 2003. Correlation between strong earthquake activity and active crustal-block in China Mainland and its adjacent regions[J]. Earth Science Frontiers,10(S1):74–80 (in Chinese).
    吴福元,徐义刚,高山,郑建平. 2008. 华北岩石圈减薄与克拉通破坏研究的主要学术争论[J]. 岩石学报,24(6):1145–1174.
    Wu F Y,Xu Y G,Gao S,Zheng J P. 2008. Lithospheric thinning and destruction of the North China Craton[J]. Acta Petrologica Sinica,24(6):1145–1174 (in Chinese).
    徐东卓,朱传宝,孟宪纲,尹海权,孙非非. 2018. 山西中北部地区地壳垂直形变时空演化特征及与强震的关系[J]. 地震研究,41(3):446–450. doi: 10.3969/j.issn.1000-0666.2018.03.014
    Xu D Z,Zhu C B,Meng X G,Yin H Q,Sun F F. 2018. Temporal and spatial evolution characteristics of crust vertical deformation and its relationship with strong earthquakes in central and northern Shanxi[J]. Journal of Seismological Research,41(3):446–450 (in Chinese).
    赵斌,聂兆生,黄勇,王伟,张彩红,谭凯,杜瑞林. 2014. 大规模GPS揭示的华北地区现今垂直运动[J]. 大地测量与地球动力学,34(5):35–39.
    Zhao B,Nie Z S,Huang Y,Wang W,Zhang C H,Tan K,Du R L. 2014. Vertical motion of North China inferred from dense GPS measurements[J]. Journal of Geodesy and Geodynamics,34(5):35–39 (in Chinese).
    周晓慧,杨艺林,姜卫平,周星宇. 2020. GNSS影像及其时空特征初探[J]. 地球物理学报,63(1):155–171. doi: 10.6038/cjg2020M0473
    Zhou X H,Yang Y L,Jiang W P,Zhou X Y. 2020. Preliminary spatial-temporal pattern of vertical deformation revealed by GNSS imaging[J]. Chinese Journal of Geophysics,63(1):155–171 (in Chinese).
    朱建军,李志伟,胡俊. 2017. InSAR变形监测方法与研究进展[J]. 测绘学报,46(10):1717–1733. doi: 10.11947/j.AGCS.2017.20170350
    Zhu J J,Li Z W,Hu J. 2017. Research progress and methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica,46(10):1717–1733 (in Chinese).
    朱日祥,邓成龙,潘永信. 2007. 泥河湾盆地磁性地层定年与早期人类演化[J]. 第四纪研究,27(6):922–944. doi: 10.3321/j.issn:1001-7410.2007.06.008
    Zhu R X,Deng C L,Pan Y X. 2007. Magnetochronology of the fluvio-lacustrine sequences in the Nihewan basin and its implications for early human colonization of Northeast Asia[J]. Quaternary Sciences,27(6):922–944 (in Chinese).
    Altamimi Z,Rebischung P,Métivier L,Collilieux X. 2016. ITRF2014:A new release of the International Terrestrial Reference Frame modeling nonlinear station motions[J]. J Geophys Res:Solid Earth,121(8):6109–6131. doi: 10.1002/2016JB013098
    Beavan J,Denys P,Denham M,Hager B,Herring T,Molnar P. 2010. Distribution of present-day vertical deformation across the southern Alps,New Zealand,from 10 years of GPS data[J]. Geophys Res Lett,37(16):L16305.
    Bennett R A,Hreinsdóttir S. 2007. Constraints on vertical crustal motion for long baselines in the Central Mediterranean region using continuous GPS[J]. Earth Planet Sci Lett,257(3/4):419–434.
    Blewitt G,Altamimi Z,Davis J,Gross R,Kuo C Y,Lemoine F G,Moore A W,Neilan R E,Plag H P,Rothacher M,Shum C K,Sideris M G,Schöne T,Tregoning P,Zerbini S. 2010. Geodetic observations and global reference frame contributions to understanding sea-level rise and variability[C]//Understanding Sea-Level Rise and Variability. Oxford:Wiley-Blackwell:256−284.
    Ching K E,Hsieh M L,Johnson K M,Chen K H,Rau R J,Yang M. 2011. Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations,2000−2008[J]. J Geophys Res:Solid Earth,116(B8):B08406.
    Dong S W,Zhang Y Q,Li H L,Shi W,Xue H M,Li J H,Huang S Q,Wang Y C. 2018. The Yanshan orogeny and late Mesozoic multi-plate convergence in East Asia:Commemorating 90th years of the “Yanshan orogeny”[J]. Science China Earth Sciences,61(12):1888–1909. doi: 10.1007/s11430-017-9297-y
    Feng W,Zhong M,Lemoine J M,Biancale R,Hsu H T,Xia J. 2013. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements[J]. Water Resour Res,49(4):2110–2118. doi: 10.1002/wrcr.20192
    Fu Y N,Freymueller J T. 2012. Seasonal and long-term vertical deformation in the Nepal Himalaya constrained by GPS and GRACE measurements[J]. J Geophys Res:Solid Earth,117(B3):B03407.
    Hao H T,Liu H L,Zhang X L,Wei J,Zhao B,Hu M Z. 2021. Terrestrial water storage variation in Hebei plain area of China,based on ground surface gravimetry[J]. Geod Geodyn,12(3):190–196. doi: 10.1016/j.geog.2021.02.003
    Hao M,Freymueller J T,Wang Q L,Cui D X,Qin S L. 2016. Vertical crustal movement around the southeastern Tibetan Plateau constrained by GPS and GRACE data[J]. Earth Planet Sci Lett,437:1–8. doi: 10.1016/j.jpgl.2015.12.038
    Herring T,King R,McClusky S. 2018. GLOBK Reference Manual:Global Kalman Filter VLBI and GNSS Analysis Program[M]. Release 10.7. Massachussetts:Massachussetts Institute Technology:76−87.
    Hu Y,Bürgmann R,Freymueller J T,Banerjee P,WangK. 2014. Contributions of poroelastic rebound and a weak volcanic arc to the postseismic deformation of the 2011 Tohoku earthquake[J]. Earth Planets Space,66:106.
    Jiang L,Bai L,Zhao Y,Cao G,Wang H,Sun Q. 2018. Combining InSAR and hydraulic head measurements to estimate aquifer parameters and storage variations of confined aquifer system in Cangzhou,North China Plain[J]. Water Resour Res,54(10):8234–8252. doi: 10.1029/2017WR022126
    Lagler K,Schindelegger M,Böhm J,Krásná H,Nilsson T. 2013. GPT2:Empirical slant delay model for radio space geodetic techniques[J]. Geophys Res Lett,40(6):1069–1073. doi: 10.1002/grl.50288
    Langbein J. 2004. Noise in two-color electronic distance meter measurements revisited[J]. J Geophys Res:Solid Earth,109(B4):B04406.
    Li S Y,Shen W B,Pan Y J,Zhang T X. 2020. Surface seasonal mass changes and vertical crustal deformation in North China from GPS and GRACE measurements[J]. Geod Geodyn,11(1):46–55. doi: 10.1016/j.geog.2019.05.002
    Liu J L,Davis G A,Ji M,Guan H M,Bai X D. 2008. Crustal detachment and destruction of the keel of North China Craton:Constraints from Late Mesozoic extensional structures[J]. Earth Sci Front,15(3):72–81. doi: 10.1016/S1872-5791(08)60063-9
    Liu M,Stein S,Wang H. 2011. 2000 years of migrating earthquakes in North China:How earthquakes in midcontinents differ from those at plate boundaries[J]. Lithosphere,3(2):128–132. doi: 10.1130/L129.1
    Liu R L,Zou R,Li J C,Zhang C H,Zhao B,Zhang Y K. 2018. Vertical displacements driven by groundwater storage changes in the North China Plain detected by GPS observations[J]. Remote Sens,10(2):259. doi: 10.3390/rs10020259
    Ma X Y,Wu D N. 1987. Cenozoic extensional tectonics in China[J]. Tectonophysics,133(3/4):243–255.
    Milne G A,Davis J L,Mitrovica J X,Scherneck H G,Johansson J M,Vermeer M,Koivula H. 2001. Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia[J]. Science,291(5512):2381–2385. doi: 10.1126/science.1057022
    Shen Z K,Zhao C K,Yin A,Li Y X,Jackson D D,Fang P,Dong D N. 2000. Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements[J]. J Geophys Res:Solid Earth,105(B3):5721–5734. doi: 10.1029/1999JB900391
    van Dam T,Wahr J,Lavallée D. 2007. A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe[J]. J Geophys Res:Solid Earth,112(B3):B03404.
    Wang M,Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):e2019JB018774. doi: 10.1029/2019JB018774
    Wesson R L,Melnick D,Cisternas M,Moreno M,Ely L L. 2015. Vertical deformation through a complete seismic cycle at Isla Santa María,Chile[J]. Nat Geosci,8(7):547–551. doi: 10.1038/ngeo2468
    Xu Y G,Li H Y,Pang C J,He B. 2009. On the timing and duration of the destruction of the North China Craton[J]. Chinese Science Bulletin,54(19):3379–3396. doi: 10.1007/s11434-009-0346-5
    Zhao B,Huang Y,Zhang C H,Wang W,Tan K,Du R L. 2015. Crustal deformation on the Chinese mainland during 1998−2014 based on GPS data[J]. Geod Geodyn,6(1):7–15. doi: 10.1016/j.geog.2014.12.006
    Zhang Y Q,Shi W,Dong S W. 2011. Changes of late Mesozoic tectonic regimes around the Ordos Basin (North China) and their geodynamic implications[J]. Acta Geologica Sinica,85(6):801–840.
    Zheng G,Wang H,Wright T J,Lou Y D,Zhang R,Zhang W X,Shi C,Huang J F,Wei N. 2017. Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements[J]. J Geophys Res:Solid Earth,122(11):9290–9312. doi: 10.1002/2017JB014465
    Zhu R X,Chen L,Wu F Y,Liu J L. 2011. Timing,scale and mechanism of the destruction of the North China Craton[J]. Science China Earth Sciences,54(6):789–797. doi: 10.1007/s11430-011-4203-4
  • Related Articles

Catalog

    Article views (41) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return