Niu F G,Zhang B,Chen S. 2024. Review and perspective of Earth Science Knowledge Graph in Big Data Era. Acta Seismologica Sinica46(3):353−376. DOI: 10.11939/jass.20230157
Citation: Niu F G,Zhang B,Chen S. 2024. Review and perspective of Earth Science Knowledge Graph in Big Data Era. Acta Seismologica Sinica46(3):353−376. DOI: 10.11939/jass.20230157

Review and perspective of Earth Science Knowledge Graph in Big Data Era

More Information
  • Received Date: December 05, 2023
  • Revised Date: March 15, 2024
  • Available Online: June 25, 2024
  • Earth Science is a discipline that heavily relies on data, yet it is not fully harnessing the advantages of Earth data with existing technological means though covers many subject areas, Knowledge Graphs (KGs) is widely recognized as an effective approach to fully harness and utilize the extensive data in this field. Earth Science Knowledge Graphs can integrate geoscience knowledge, enhance research efficiency, and facilitate interdisciplinary collaboration. By analyzing network connections and semantic relationships, they uncover knowledge associations and patterns, andaid researchers in identifying new domains and posing novel research questions. Unlike conventional advancements in large-scale modeling technologies, Knowledge Graph offers precise knowledge that enhances both the intelligence and dependability of generated outcomes from such models.

    Firstly, this study provides a detailed exposition of Knowledge Graph concepts and construction methods. Knowledge Graphs, as a form of data graph, are designed to collect and convey knowledge from the real world. Their universal expression is in the form of triples, consisting of head entities, tail entities, and the relationships between them. Knowledge Graphs have emerged as a significant approach for organizing structured knowledge and integrating information from multiple data sources in the organizational world. Their architectural framework primarily encompasses four components: source data acquisition, knowledge fusion, knowledge computation, and knowledge application. Source data acquisition stands as the primary step in building Knowledge Graphs, focusing on extracting useful information from various types of data. Knowledge fusion is pivotal in addressing the heterogeneity of different Knowledge Graphs, with the aim of enhancing their quality through integration. Knowledge computation represents the primary output capability of Knowledge Graphs, currently applied in fields such as semantic search, question answering, and visualization analysis. Knowledge Graph construction technology enables the extraction of information from structured, unstructured, and semi-structured data sources, organizing this information into knowledge and presenting it in graphical form. Presently, the construction of Knowledge Graphs in the field of Earth Sciences primarily employs two methods: Top-down and bottom-up approaches, with the overarching principle being the synthesis of both methods while allowing flexibility in their specific sequencing.

    Secondly, this study offers a comprehensive introduction to the widely applied top-level ontology, the Basic Formal Ontology (BFO) model, in the scientific domain. The paper briefly summarizes existing Knowledge Graph in the geoscience field, emphasizing the GeoCore Ontology and Geoscience ontology (GSO) in the Earth Science domain, highlighting their similarities and differences. BFO, comprising 38 classes, is designed to facilitate information integration, retrieval, and analysis in scientific research. Presently, BFO has been successfully employed in over 350 ontology projects worldwide. The GeoCore Ontology, built upon BFO, serves as a specialized framework to describe the core concepts within the domain of Earth Science, rigorously defining a set of universal geological concepts during its development. Conversely, GSO provides a systematic framework for representing crucial geological science knowledge, encompassing three hierarchical layers: foundational, geological, and detailed modules. GeoCore can be viewed as an intermediary layer within GSO, which can be further expanded, while detailed modules have already been constructed within GSO. Additionally, researchers worldwide employ various methods such as literature mining, domain expert interviews, and data mining techniques to extract Earth Science knowledge from relevant literature, databases, and open data, subsequently to construct Knowledge Graphs. These Knowledge Graphs are found in applications across various domains including geological exploration, natural disaster prediction, and environmental conservation, and are utilized in practical projects such as oil and gas exploration, water resource management, and climate change research. In summary, the application scope of Earth Science Knowledge Graphs is extensive, providing a crucial foundation of data and knowledge for scientific research, decision support, and sustainable development.

    Finally, the study introduces international Earth Science data science initiatives such as the Deep-time Digital Earth (DDE) project related to constructing Earth Science Knowledge Graph, and the challenges and application prospects for the future development of Earth Science Knowledge Graph, with a focus on seismic science. The DDE aims to connect and coordinate global deep-earth data, promoting the sharing of geoscientific knowledge worldwide and facilitating research on Earth's evolution in a data-driven manner. Apart from the DDE, numerous domestic and international organizations and initiatives are driving the development of Knowledge Graph in Earth Science, such as OneGeology, EarthCube, and LinkedGeoData projects. Despite facing various challenges, Knowledge Graph is gradually overcoming these hurdles with advancements in technology and tools. These challenges are not exclusive to the field of Earth Science but are prevalent across all Knowledge Graph construction endeavors. However, due to the complexity and diversity of Earth Science, Knowledge Graph construction in this field encounters unique difficulties. Nevertheless, there is ample room for the creation and application of Knowledge Graph in Earth Science, with the introduction of Large Language Models (LLMs) bringing forth new opportunities. Earthquake Science, as a crucial branch of Earth Science, encompasses intersections of multiple primary disciplines such as geology, geophysics, and engineering seismology. However, the application of Knowledge Graphs in the field of Earthquake Science still faces significant gaps and urgently requires further research building upon existing models. In conclusion, the future development of Earth Science Knowledge Graphs will be an ongoing process of evolution and refinement, bringing more opportunities and benefits for fields such as Earth Science research, decision-making, and public education through sustained technological innovation and interdisciplinary collaboration.

  • 杜志强,李钰,张叶廷,谭玉琪,赵文豪. 2020. 自然灾害应急知识图谱构建方法研究[J]. 武汉大学学报:信息科学版,45(9):1344–1355.
    Du Z Q,Li Y,Zhang Y T,Tan Y Q,Zhao W H. 2020. Knowledge graph construction method on natural disaster emergency[J]. Geomatics and Information Science of Wuhan University,45(9):1344–1355 (in Chinese).
    段浩,韩昆,赵红莉,蒋云钟,李豪,毛文山. 2021. 水利综合知识图谱构建研究[J]. 水利学报,52(8):948–958.
    Duan H,Han K,Zhao H L,Jiang Y Z,Li H,Mao W S. 2021. Research on water conservancy comprehensive knowledge graph construction[J]. Journal of Hydraulic Engineering,52(8):948–958 (in Chinese).
    龚仁彬,杨燕子,任义丽,张晓宇. 2021. 知识图谱在石油勘探开发领域的应用现状及发展趋势[J]. 信息系统工程,(9):16–18
    Gong R B,Yang Y Z,Ren Y L,Zhang X Y. 2021. Application status and development trend of knowledge map in petroleum exploration and development[J]. China CIO News,(9):16–18 (in Chinese).
    刘国强,龚仁彬,石玉江,王珍珍,米兰,袁超,钟吉彬. 2022. 油气层测井知识图谱构建及其智能识别方法[J]. 石油勘探与开发,49(3):502–512. doi: 10.11698/PED.20210750
    Liu G Q,Gong R B,Shi Y J,Wang Z Z,Mi L,Yuan C,Zhong J B. 2022. Construction of well logging knowledge graph and intelligent identification method of hydrocarbon-bearing formation[J]. Petroleum Exploration and Development,49(3):502–512 (in Chinese). doi: 10.1016/S1876-3804(22)60042-9
    刘峤,李杨,段宏,刘瑶,秦志光. 2016. 知识图谱构建技术综述[J]. 计算机研究与发展,53(3):582–600. doi: 10.7544/issn1000-1239.2016.20148228
    Liu Q,Li Y,Duan H,Liu Y,Qin Z G. 2016. Knowledge graph construction techniques[J]. Journal of Computer Research and Development,53(3):582–600 (in Chinese).
    毛文山,赵红莉,蒋云钟,段浩,郝震. 2019. 基于文献计量学的国内水生态环境研究知识图谱构建与应用[J]. 水利学报,50(11):1400–1416.
    Mao W S,Zhao H L,Jiang Y Z,Duan H,Hao Z. 2019. Construction and application of knowledge graph of domestic water eco-environment based on bibliometrics[J]. Journal of Hydraulic Engineering,50(11):1400–1416 (in Chinese).
    齐浩,董少春,张丽丽,胡欢,樊隽轩. 2020. 地球科学知识图谱的构建与展望[J]. 高校地质学报,26(1):2–10.
    Qi H,Dong S C,Zhang L L,Hu H,Fan J X. 2020. Construction of Earth science knowledge graph and its future perspectives[J]. Geological Journal of China Universities,26(1):2–10 (in Chinese).
    邱芹军,吴亮,马凯,谢忠,陶留锋. 2023. 面向灾害应急响应的地质灾害链知识图谱构建方法[J]. 地球科学,48(5):1875–1891.
    Qiu Q J,Wu L,Ma K,Xie Z,Tao L F. 2023. A knowledge graph construction method for geohazard chain for disaster emergency response[J]. Earth Science,48(5):1875–1891 (in Chinese).
    冉一早,董少春,王汝成,胡欢,方思源,常丰年,孔嘉. 2023. 铌钽矿床知识图谱的构建及应用实践[J]. 高校地质学报,29(3):359–371.
    Ran Y Z,Dong S C,Wang R C,Hu H,Fang S Y,Chang F N,Kong J. 2023. Construction of Nb-Ta deposit knowledge graph and its application[J]. Geological Journal of China Universities,29(3):359–371 (in Chinese).
    王益鹏,张雪英,党玉龙,叶鹏. 2023. 顾及时空过程的台风灾害事件知识图谱表示方法[J]. 地球信息科学学报,25(6):1228–1239.
    Wang Y P,Zhang X Y,Dang Y L,Ye P. 2023. Knowledge graph representation of typhoon disaster events based on spatiotemporal processes[J]. Journal of Geo-Information Science,25(6):1228–1239 (in Chinese).
    吴张中. 2023. 油气管道地质灾害风险管理知识图谱构建与应用[J]. 油气储运,42(3):241–248. doi: 10.6047/j.issn.1000-8241.2023.03.001
    Wu Z Z. 2023. Construction and application of knowledge graph of geohazard risk management for oil and gas pipeline[J]. Oil &Gas Storage and Transportation,42(3):241–248 (in Chinese).
    张春菊,刘文聪,张雪英,叶鹏,汪陈,朱少楠,张达玉. 2023. 基于本体的金矿知识图谱构建方法[J]. 地球信息科学学报,25(7):1269–1281.
    Zhang C J,Liu W C,Zhang X Y,Ye P,Wang C,Zhu S N,Zhang D Y. 2023. Knowledge graph construction method of gold mine based on ontology[J]. Journal of Geo-Information Science,25(7):1269–1281 (in Chinese).
    张吉祥,张祥森,武长旭,赵增顺. 2022. 知识图谱构建技术综述[J]. 计算机工程,48(3):23–37.
    Zhang J X,Zhang X S,Wu C X,Zhao Z S. 2022. Survey of knowledge graph construction techniques[J]. Computer Enginee ring,48(3):23–37 (in Chinese).
    周永章,张前龙,黄永健,杨威,肖凡,吉俊杰,韩枫,唐磊,欧阳冲,沈文杰. 2021. 钦杭成矿带斑岩铜矿知识图谱构建及应用展望[J]. 地学前缘,28(3):67–75.
    Zhou Y Z,Zhang Q L,Huang Y J,Yang W,Xiao F,Ji J J,Han F,Tang L,Ouyang C,Shen W J. 2021. Constructing knowledge graph for the porphyry copper deposit in the Qinzhou-Hangzhou bay area:Insight into knowledge graph based mineral resource prediction and evaluation[J]. Earth Science Frontiers,28(3):67–75 (in Chinese).
    朱彦,郑捷,李晓瑛,杨啸林,何勇群. 2021. 基本形式化本体及其中文版介绍[J]. 医学信息学杂志,42(1):24–28.
    Zhu Y,Zheng J,Li X Y,Yang X L,He Y Q. 2021. Introduction to basic formal ontology and its Chinese version[J]. Journal of Medical Informatics,42(1):24–28 (in Chinese).
    Abel M,Perrin M,Carbonera J L,Garcia L. 2016. Ontologies and data models:Essential properties and data modeling for petroleum exploration[J]. Found J Prof Petrol Data Manag Assoc,3(1):18–19.
    Abu-Salih B. 2021. Domain-specific knowledge graphs:A survey[J]. J Netw Comput Appl,185:103076. doi: 10.1016/j.jnca.2021.103076
    Aldana-Martín J F,García-Nieto J,Del Mar Roldán-García M,Aldana-Montes J F. 2022. Semantic modelling of earth observation remote sensing[J]. Expert Syst Appl,187:115838. doi: 10.1016/j.eswa.2021.115838
    Bassett L. 2015. Introduction to JavaScript Object Notation:A To-The-Point Guide to JSON[M]. Sebastopol:O'Reilly Media,Inc:1−4.
    Brodaric B,Richard S M. 2021. The GeoScience Ontology Reference[M]. Ottawa:Geological Survey of Canada:34.
    Chaudhri V K,Baru C,Chittar N,Dong X L,Genesereth M,Hendler J,Kalyanpur A,Lenat D B,Sequeda J,Vrandečić D,Wang K S. 2022. Knowledge graphs:Introduction,history,and perspectives[J]. AI Mag,43(1):17–29.
    Cheatham M,Krisnadhi A,Amini R,Hitzler P,Janowicz K,Shepherd A,Narock T,Jones M,Ji P. 2018. The GeoLink knowledge graph[J]. Big Earth Data,2(2):131–143. doi: 10.1080/20964471.2018.1469291
    Chen T,Wang X W,Yue T,W Bai X Y,Le C X,Wang W P. 2023. Enhancing abstractive summarization with extracted knowledge graphs and multi-source transformers[J]. Appl Sci,13(13):7753. doi: 10.3390/app13137753
    Chen X L,Xie H R,Li Z X,Cheng G. 2021. Topic analysis and development in knowledge graph research:A bibliometric review on three decades[J]. Neurocomputing,461:497–515. doi: 10.1016/j.neucom.2021.02.098
    Chen Z,Wang Y H,Zhao B,Cheng J,Zhao X,Duan Z T. 2020. Knowledge graph completion:A review[J]. IEEE Access,8:192435–192456. doi: 10.1109/ACCESS.2020.3030076
    Cicconeto F,Vieira L V,Abel M,Dos Santos Alvarenga R,Carbonera J L,Garcia L F. 2022. GeoReservoir:An ontology for deep-marine depositional system geometry description[J]. Comput Geosci,159:105005. doi: 10.1016/j.cageo.2021.105005
    Cui C Y,Xu M Z,Xu C S,Zhang P,Zhao J T. 2023. An ontology-based probabilistic framework for comprehensive seismic risk evaluation of subway stations by combining Monte Carlo simulation[J]. Tunn Undergr Sp Tech,135:105055. doi: 10.1016/j.tust.2023.105055
    Deng C,Zhang T H,He Z M,Chen Q Y,Shi Y Y,Xu Y,Fu L Y,Zhang W N,Wang X B,Zhou C H,Lin Z H,He J X. 2024. K2:A foundation language model for geoscience knowledge understanding and utilization[C]//Proceedings of the 17th ACM International Conference on Web Search and Data Mining. NewYork:Association for computing Machinery:161−170.
    Díaz J D R,Vilches-Blázquez L M. 2022. Characterizing water quality datasets through multi-dimensional knowledge graphs:A case study of the Bogota river basin[J]. J Hydroinform,24(2):295–314. doi: 10.2166/hydro.2022.070
    Ding L F,Xiao G H,Pano A,Stadler C,Calvanese D. 2021. Towards the next generation of the LinkedGeoData project using virtual knowledge graphs[J]. J Web Semant,71:100662. doi: 10.1016/j.websem.2021.100662
    Enkhsaikhan M,Holden E J,Duuring P,Liu W. 2021. Understanding ore-forming conditions using machine reading of text[J]. Ore Geol Rev,135:104200. doi: 10.1016/j.oregeorev.2021.104200
    Falanga M,De Lauro E,Petrosino S,Rincon-Yanez D,Senatore S. 2022. Semantically enhanced IoT-oriented seismic event detection:An application to Colima and Vesuvius volcanoes[J]. IEEE Int Things J,9(12):9789–9803
    Fan R,Wang L,Yan J,Song W,Zhu Y,Chen X. 2019. Deep learning-based named entity recognition and knowledge graph construction for geological hazards[J]. ISPRS Int J Geo-Informa,9(1):15. doi: 10.3390/ijgi9010015
    Garcia L F,Abel M,Perrin M,Dos Santos Alvarenga R. 2020. The GeoCore ontology:A core ontology for general use in geology[J]. Comput Geosci,135:104387. doi: 10.1016/j.cageo.2019.104387
    Ge X T,Yang Y,Peng L,Chen L J,Li W C,Zhang W Y,Chen J H. 2022a. Spatio-temporal knowledge graph based forest fire prediction with multi source heterogeneous data[J]. Remote Sens,14(14):3496. doi: 10.3390/rs14143496
    Ge X T,Yang Y,Chen J H,Li W C,Huang Z S,Zhang W Y,Peng L. 2022b. Disaster prediction knowledge graph based on multi-source spatio-temporal information[J]. Remote Sens,14(5):1214. doi: 10.3390/rs14051214
    Guarino N. 1998. Formal Ontology in Information Systems:Proceedings of the 1st International Conference,June 6-8,1998,Trento,Italy[M]. Amsterdam,Netherlands:IOS Press:4−10.
    Guarino N,Welty C. 2002. Evaluating ontological decisions with OntoClean[J]. Commun ACM,45(2):61–65. doi: 10.1145/503124.503150
    Guichet X,Dubos-Sallée N,Cacas-Stentz M C,Rahon D,Martinez V. 2019. Efficient access to relevant knowledge extracted from geoscience literature dedicated to petroleum basin exploration by using IBM Watson[C]//Proceedings of 2019 AAPG Annual Convention and Exhibition. San Antonio:AAPG:87.
    Guizzardi G,Benevides A B,Fonseca C M,Porello D,Almeida J P A,Sales T P. 2022. UFO:Unified foundational ontology[J]. Appl Ontol,17(1):167–210. doi: 10.3233/AO-210256
    Gutiérrez C,Sequeda J F. 2021. Knowledge graphs[J]. Commun ACM,64(3):96–104. doi: 10.1145/3418294
    Hao X J,Ji Z,Li X H,Yin L Z Y,Liu L,Sun M Y,Liu Q,Yang R J. 2021. Construction and application of a knowledge graph[J]. Remote Sens,13(13):2511. doi: 10.3390/rs13132511
    Hoeser T,Kuenzer C. 2022. SyntEO:Synthetic dataset generation for earth observation and deep learning:Demonstrated for offshore wind farm detection[J]. ISPRS J Photogramm Remote Sens,189:163–184. doi: 10.1016/j.isprsjprs.2022.04.029
    Hogan A,Blomqvist E,Cochez M,D’Amato C,De Melo G ,Gutierrez C,Kirrane S,Gayo J E L,Navigli R,Neumaier S,Ngomo A C N,Polleres A,Rashid S M,Rula A,Schmelzeise L,Sequeda J,Staab S,Zimmerman A. 2021. Knowledge graphs[J]. ACM Comput Surv, 54 (4):71.
    Hu X M,Xu Y W,Ma X,Zhu Y,Ma C,Li C,Lü H,Wang X,Zhou C,Wang,C. 2023. Knowledge system,ontology,and knowledge graph of the Deep-Time Digital Earth (DDE):Progress and perspective[J]. J Earth Sci,34(5):1323–1327. doi: 10.1007/s12583-023-1930-1
    Jackson I. 2008. OneGeology:From concept to reality[J]. Epis J Int Geosci,31(3):344–345.
    Kocoń J,Cichecki I,Kaszyca O,Kochanek M,Szydło D,Baran J,Bielaniewicz J,Gruza M,Janz A,Kanclerz K,Kocoń A,Koptyra B,Mieleszczenko-Kowszewicz W,Miłkowski P,Oleksy M,Piasecki M,Radliński L,Wojtasik L,Woźniak S,Kazienko P. 2023. ChatGPT:Jack of all trades,master of none[J]. Inform Fusion,99:101861. doi: 10.1016/j.inffus.2023.101861
    Krisnadhi A,Hu Y J,Janowicz K,Hitzler P,Arko R,Carbotte S,Chandler C,Cheatham M,Fils D,Finin T,Finin T,Ji P,Jones M,Karima N,Lehnert K,Mickle A,Narock T,O’Brien M,Raymond L,Shepherd A,Schildhauer M,Wiebe P. 2015. The GeoLink modular oceanography ontology[C]//The Semantic Web-ISWC 2015:Proceedings of the 14th International Semantic Web Conference,Bethlehem,PA,USA,October 11−15,2015,Proceedings,Part Ⅱ 14. Bethlehem:Springer International Publishing:301−309.
    Laxton J L. 2017. Geological map fusion:OneGeology-Europe and INSPIRE[J]. Spec Publ,408(1):147–160. doi: 10.1144/SP408.16
    Li Y S,Kong D Y,Zhang Y J,Tan Y H,Chen L. 2021. Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification[J]. ISPRS J Photogramm Remote Sens,179:145–158. doi: 10.1016/j.isprsjprs.2021.08.001
    Liu C,Chen J P,Li S,Qin T. 2022. Construction of conceptual prospecting model based on geological big data:A case study in Songtao-Huayuan area,Hunan Province[J]. Minerals,12(6):669. doi: 10.3390/min12060669
    Liu X H,Liu Z,Liu Y W,Tian J K. 2021. Integration of a geo-ontology-based knowledge model and spatial analysis into emergency response for geologic hazards[J]. Nat Hazards,108(2):1489–1514. doi: 10.1007/s11069-021-04742-5
    Liu X J,Zhang Y J,Zou H M,Wang F,Cheng X,Wu W P,Liu X Y,Li Y S. 2023. Multi-source knowledge graph reasoning for ocean oil spill detection from satellite SAR images[J]. Int J Appl Earth Obs Geoinform,116:103153.
    Lv X,Xie Z,Xu D X,Jin X G,Ma K,Tao L F,Qiu Q,J Pan Y S. 2022. Chinese named entity recognition in the geoscience domain based on bert[J]. Earth Space Sci,9(3):e2021EA002166. doi: 10.1029/2021EA002166
    Ma X G. 2022. Knowledge graph construction and application in geosciences:A review[J]. Comput Geosci,161:105082. doi: 10.1016/j.cageo.2022.105082
    McBride B. 2004. The resource description framework (RDF) and its vocabulary description language RDFS[M]//Handbook on Ontologies. Berlin,Heidelberg:Springer:51−65.
    Meyer L P,Stadler C,Frey J,Radtke N,Junghanns K,Meissner R,Dziwis G,Bulert K,Martin M. 2023. LLM-assisted knowledge graph engineering:Experiments with ChatgPt[C]//First Working Conference on Artificial Intelligence Development for A Resilient and Sustainable Tomorrow. Wiesbaden:Springer Vieweg:103−115.
    Mezni H,Driss M,Boulila W,Atitallah S B,Sellami M,Alharbi N. 2022. Smartwater:A service-oriented and sensor cloud-based framework for smart monitoring of water environments[J]. Remote Sens,14(4):922. doi: 10.3390/rs14040922
    Mughal M H,Shaikh Z A,Wagan A I,Khand Z H,Hassan S. 2021. ORFFM:An ontology-based semantic model of river flow and flood mitigation[J]. IEEE Access,9:44003–44031. doi: 10.1109/ACCESS.2021.3066255
    Oberle D. 2006. Semantic Management of Middleware[M]. New York:Springer:33−53.
    Otte J N,Beverley J,Ruttenberg A. 2022. BFO:Basic formal ontology[J]. Appl Ontol,17(1):17–43. doi: 10.3233/AO-220262
    Peters S E,Zhang C,Livny M,Ré C. 2014. A machine reading system for assembling synthetic paleontological databases[J]. PLoS One,9(12):e113523. doi: 10.1371/journal.pone.0113523
    Qu Y W,Perrin M,Torabi A,Abel M,Giese M. 2024. GeoFault:A well-founded fault ontology for interoperability in geological modeling[J]. Comput Geosci,182:105478. doi: 10.1016/j.cageo.2023.105478
    Raskin R G,Pan M J. 2005. Knowledge representation in the semantic web for Earth and environmental terminology (SWEET)[J]. Comput Geosci,31(9):1119–1125. doi: 10.1016/j.cageo.2004.12.004
    Richard S M,Pearthree G,Aufdenkampe A K,Cutcher-Gershenfeld J,Daniels M,Gomez B,Kinkade D,Percivall G. 2014. Community-developed geoscience cyberinfrastructure[J]. Eos,95(20):165–166.
    Rising J,Tedesco M,Piontek F,Stainforth D A. 2022. The missing risks of climate change[J]. Nature,610(7933):643–651. doi: 10.1038/s41586-022-05243-6
    Roldán-Molina G R,Ruano-Ordás D,Basto-Fernandes V,Méndez J R. 2021. An ontology knowledge inspection methodology for quality assessment and continuous improvement[J]. Data Knowl Eng,133:101889. doi: 10.1016/j.datak.2021.101889
    Santos N O,Rodrigues F H,Schmidt D,Romeu R K,Nascimento G,Abel M. 2024. O3PO:A domain ontology for offshore petroleum production plants[J]. Expert Syst Appl,238:122104. doi: 10.1016/j.eswa.2023.122104
    Scherp A,Saathoff C,Franz T,Staab S. 2011. Designing core ontologies[J]. Appl Ontol,6(3):177–221. doi: 10.3233/AO-2011-0096
    Studer R,Benjamins V R,Fensel D. 1998. Knowledge engineering:Principles and methods[J]. Data Knowl Eng,25(1/2):161–197.
    Sun S T,Dustdar S,Ranjan R,Morgan G,Dong Y S,Wang L Z. 2022. Remote sensing image interpretation with semantic graph-based methods:A survey[J]. IEEE Sel Top Appl Earth Obs Remote Sens,15:4544–4558. doi: 10.1109/JSTARS.2022.3176612
    Sure Y,Staab S,Studer R. 2009. Ontology engineering methodology[M]//Handbook on Ontologies. Berlin,Heidelberg:Springer :135−152.
    Tang X M,Feng Z Q,Xiao Y T,Wang M,Ye T R,Zhou Y J,Meng J,Zhang B S,Zhang D W. 2023. Construction and application of an ontology-based domain-specific knowledge graph for petroleum exploration and development[J]. Geosci Front,14(5):101426. doi: 10.1016/j.gsf.2022.101426
    Tiwari S,Al-Aswadi F N,Gaurav D. 2021. Recent trends in knowledge graphs:Theory and practice[J]. Soft Comput,25(13):8337–8355. doi: 10.1007/s00500-021-05756-8
    Wang B,Wu L,Xie Z,Qiu Q J,Zhou Y,Ma K,Tao L F. 2022. Understanding geological reports based on knowledge graphs using a deep learning approach[J]. Comput Geosci,168:105229. doi: 10.1016/j.cageo.2022.105229
    Wang C B,Ma X G,Chen J G,Chen J W. 2018. Information extraction and knowledge graph construction from geoscience literature[J]. Comput Geosci,112:112–120. doi: 10.1016/j.cageo.2017.12.007
    Wang C S,Hazen R M,Cheng Q M,Stephenson M H,Zhou C H,Fox P,Shen S Z,Oberhänsli R,Hou Z Q,Ma X G,Feng Z Q,Fan J X,Ma,C,Hu X M,Luo,B. 2021a. The Deep-Time Digital Earth Program:Data-driven discovery in geosciences[J]. Natl Sci Rev,8(9):nwab027. doi: 10.1093/nsr/nwab027
    Wang M H,Zhang X Y,Feng D E,Wang Y P,Tang W,Ye P. 2021b. Risk assessment of alpine skiing events based on knowledge graph:A focus on meteorological conditions[J]. Isprs Int J Geo-Inf,10(12):835. doi: 10.3390/ijgi10120835
    Wang S,Zhang X Y,Ye P,Du M,Lu Y X,Xue H N. 2019. Geographic Knowledge Graph (GeoKG):A formalized geographic knowledge representation[J]. ISPRS Int J Geo-Inf,8(4):184. doi: 10.3390/ijgi8040184
    Wu J T,Orlandi F,O’Sullivan D,Dev S. 2022a. LinkClimate:An interoperable knowledge graph platform for climate data[J]. Comput Geosci,169:105215. doi: 10.1016/j.cageo.2022.105215
    Wu J T,Orlandi F,O’Sullivan D,Pisoni E,Dev S. 2022b. Boosting climate analysis with semantically uplifted knowledge graphs[J]. IEEE J Sel Top Appl Earth Obs Remote Sens,15:4708–4718. doi: 10.1109/JSTARS.2022.3177463
    Yu T L,Yang H,Luo X W,Jiang Y F,Wu X,Gao J Q. 2021. Scientometric analysis of disaster risk perception:2000−2020[J]. Int J Env Res Pub He,18(24):13003. doi: 10.3390/ijerph182413003
    Zhang C,Govindaraju V,Borchardt J,Foltz T,Ré C,Peters S. 2013. GeoDeepDive:Statistical inference using familiar data-processing languages[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. New York:Association for Computing Machinery:993−996.
    Zhang M,Wang J L. 2022. Global flood disaster research graph analysis based on literature mining[J]. Appl Sci,12(6):3066. doi: 10.3390/app12063066
    Zhang X Y,Huang Y,Zhang C J,Ye P. 2022. Geoscience Knowledge Graph (GeoKG):Development,construction and challenges[J]. Trans GIS,26(6):2480–2494. doi: 10.1111/tgis.12985
    Zhao M W,Jiang L,Wang C,Yang C C,Yang X. 2021. On the topographic entity-oriented digital elevation model construction method for urban area land surface[J]. Front Earth Sci Prc,15(3):580–594. doi: 10.1007/s11707-020-0859-4
    Zheng K,Xie M H,Zhang J B,Xie J,Xia S H. 2022. A knowledge representation model based on the geographic spatiotemporal process[J]. Int J Geogr Inf Sci,36(4):674–691. doi: 10.1080/13658816.2021.1962527
    Zhou C H,Wang H,Wang C S,Hou Z Q,Zheng Z M,Shen S Z,Cheng Q M,Feng Z Q,Wang X B,Lv H R,Fan J X,Hu X M,Hou M C,Zhu Y Q. 2021. Geoscience knowledge graph in the big data era[J]. Science China Earth Science,64(7):1105–1114. doi: 10.1007/s11430-020-9750-4
    Zhou L,Cheatham M,Krisnadhi A,Hitzler P. 2020. Geolink data set:A complex alignment benchmark from real-world ontology[J]. Data Intell,2(3):353–378. doi: 10.1162/dint_a_00054
    Zhu Y,Zhou W,Xu Y,Liu J,Tan Y. 2017. Intelligent learning for knowledge graph towards geological data[J]. Sci Progr,2017:5072427.

Catalog

    Article views (480) PDF downloads (239) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return