Xu J R,Li H B,Zeng X Z,Xu J S,Zhao Z X. 2024. Review and prospect of borehole seismic observation research in China:From borehole to Donghai borehole vertical seismic array. Acta Seismologica Sinica46(6):919−935. DOI: 10.11939/jass.20230158
Citation: Xu J R,Li H B,Zeng X Z,Xu J S,Zhao Z X. 2024. Review and prospect of borehole seismic observation research in China:From borehole to Donghai borehole vertical seismic array. Acta Seismologica Sinica46(6):919−935. DOI: 10.11939/jass.20230158

Review and prospect of borehole seismic observation research in China:From borehole to Donghai borehole vertical seismic array

More Information
  • Received Date: December 06, 2023
  • Revised Date: May 17, 2024
  • Accepted Date: May 19, 2024
  • Available Online: December 17, 2024
  • This paper summarizes the newly research achievements of the underground seismic observation networks and borehole vertical seismic arrays in China, and looks forward to the prospect of underground observation research in the future. There are hundreds of underground observation stations with excellent observation quality currently. The underground seismic observational network pioneers a new technical approach for the physics in the Earth's interior of observation and study in the depths.

    This analysis indicates that the underground observation can avoid the surface noise and site effects, and obtain high-quality seismic data. Therefore, it is possible for scientist to construct borehole stations scientifically in the earthquake monitoring areas, even if in the high noise background areas. Then the earthquake epicenter will be determined more accurately based on data observed from the reasonable station layout. The ability monitoring seismic activity is improved greatly. Simultaneously, the underground seismometer can record clear seismic wave near the epicenter because of avoiding the surface noise. The seismic waves observed near the epicenter retain more high-frequency components of waveforms which are essential data for study of the fine structure of the earth. It promotes the development of the seismological science.

    It also can reduce the average velocity differences of P and S waves between stations due to different ground station foundations for us to study the spatial heterogeneity of the seismic wave velocity distribution if we use underground observation velocities. The accuracy and reliability of the 3D velocity model can significantly be improved by employing the data that reduced velocity differences mentioned above. The research findings suggested that the Tangshan strong earthquake occurred between the low speed zone and high speed zone too. The study results on the temporal variation of wave velocity indicated that a credible precursor process of wave velocity reduction also appeared before the Wen’an MS5.1 earthquake.

    The surface reflected seismic waves near earthquakes have been surveyed through the underground observations. The accurate velocity structure of the crustal sedimentary layer can be established by employing the combination of incident waves and surface reflection waves. The high precision velocity models of the shallow layer are also of great significance to study the fine structure of the Earth’s interior.

    The seismic kinematic and dynamic parameters, such as arrival time, component frequency and amplitude of seismic waves can accurately be determined by employing the low noise waves by the underground observation. The reliable high-level research findings are likely achieved based on the accurate parameters. The low noise waves observed by borehole seismometer are actually reasonable constraint for the study on seismic source. It is beneficial for scientist to solve the precise seismic source parameters and to acquire highly reliable results about the source under the strict constraint condition. A large number of excellent results have already been achieved based on the data of underground observation today. The seismic moments and moment magnitudes calculated by employing seismic waveform data from the underground observations are less than that calculated using waveforms by the ground observation. The stress drops and average earthquake dislocations computed using the waveforms from the underground observation are both less than those computed from waveforms observed in the ground bedrock. The corner frequencies calculated by seismic waveforms observed at the underground platforms are also lower than that calculated using data from the ground observations. The high-frequency components of the source spectrum calculated by waveforms from underground observation are weak, and not as abundant as that calculated using waveforms observed on the ground. As mentioned above, the magnitude and moment magnitude of the underground observation are less than those observed in the surface bedrock. The differences between the two kinds of magnitudes may be attributed to the nonlinear amplification effect of the wave in the upper medium of the borehole seismograph and the frequencies of seismic waves. Relatively, the lower corner frequencies of underground observations compared with the surface observations may be attributed to the absorption and amplification effect for different frequency wave components by the upper medium of underground instruments. In addition, the site response of the surface layer also has a significant impact on the source spectral parameters. The majority of the site responses underground platform are greater than 1 at the low-frequency domain and less than 1 at the high frequency domain respectively. The different site response between high and low frequency domain may also cause the magnitude and corner frequency observed by underground stations to be lower than those observed on the ground. The causes of source parameter differences mentioned above may be generally multiple complexities. It is still an important topic of future scientific exploration.

    The underground seismometer recorded the surface reflection waves besides of the direct waves. The phenomenon is very valuable. So the nonlinear site effects and amplification characteristics of seismic wave propagation in sediment layers are solved accurately using the two types of data: Direct and reflected waves. Then the uncertainty of theoretical wave field solution can be reduced using the high-precision site effect results. The accuracy of strong ground motion prediction can surely be improved.

    The Donghai, Jiangsu Province, borehole vertical seismic array is the first vertical seismic array in China. The array is consisted of one station at surface and four stations established at different deep layers in the borehole over 5000 meters deep and another borehole station with multiple geophysical instruments about 500 m away from the 5000 m deep borehole. The array can observe more clearer waveforms of micro-earthquakes with zero or negative magnitudes and then improve the ability to monitor crustal and seismic activities. The signal-to-noise ratios of waveforms recorded at different depths in the borehole can provide valuable reference for the construction of underground stations currently. The signal-to-noise ratios of waveforms observed in the borehole are also all greater than or equal to 70 dB. The seismic waveforms with high fidelity were obtained in the high noise background areas by means of the vertical seismic array system. The precise three-dimensional seismic wave velocity model can be established using high-quality seismic waveforms, which contributes to comprehensive reveal of the tectonic movement of the earth. The waveforms without site response and noise observed by the vertical array system are more appropriate constraints for the study of seismic sources too. The innovative research achievements on seismic source theory are expectable by the study under above scientific constraint condition.

    The borehole seismic observation research not only have made significant contributions to earth science, but also is of great practical significance for the resource assessment, earthquake prediction and disaster prevention and mitigation of earthquakes.

    The underground observation net and vertical array observation research are the frontiers of scientific problem in the world currently. More underground observation networks and borehole vertical seismic arrays are being constructed to obtain more high-precision seismic data and research findings, which will continuously innovate the future development of earth science.

  • 卞真付,姚兰予,庞群英. 2005. 利用井下数字地震记录反演非弹性衰减系数震源参数和场地响应[J]. 西北地震学报,27(增刊):58–64.
    Bian Z F,Yao L Y,Pang Q Y. 2005. The inversion of non-elasticity attenuation coefficient,source parameters and site response using borehole digital seismic recordings[J]. Northwestern Seismological Journal,27(S1):58–64 (in Chinese).
    蔡耐芳. 1990. 兰州电传台网天水台井下摆记录特征[J]. 地震地磁观测与研究,11(5):51–55.
    Cai N F. 1990. Characteristics of seismograms recorded by borehole pendulums at Tianshui Station of the Lanzhou Telemetered Seismic Network[J]. Seismological and Geomagnetic Observation and Research,11(5):51–55 (in Chinese).
    陈闯,危自根,张璇,高金哲. 2022. 井下、地表地震计记录波形对比:以松原地震台为例[J]. 地震地磁观测与研究,43(1):99–105.
    Chen C,Wei Z G,Zhang X,Gao J Z. 2022. Comparison and analysis of waveforms recorded by borehole and ground seismometers:Taking Songyuan Seismic Station as an example[J]. Seismological and Geomagnetic Observation and Research,43(1):99–105 (in Chinese).
    陈宏水,付迺珍. 1987. 井下地震计的遥控装置[J]. 地震地磁观测与研究,8(5):45–49.
    Chen H S,Fu D Z. 1987. A remote control device for borehole seismographs[J]. Seismological and Geomagnetic Observation and Research,8(5):45–49 (in Chinese).
    陈吉锋,陈军辉,刘洋君,张明. 2014. 浙江岛屿深井地震台防雷接地系统设计[J]. 地震地磁观测与研究,35(3/4):220–224.
    Chen J F,Chen J H,Liu Y J,Zhang M. 2014. Design of lightning protection and grounding system for the islands of Zhejiang deep seismic stations[J]. Seismological and Geomagnetic Observation and Research,35(3/4):220–224 (in Chinese).
    丁海平,任琼洁,于彦彦. 2014. 基于竖向台阵地震记录的场地地震响应分析[J]. 地震工程与工程振动,34(2):12–18.
    Ding H P,Ren Q J,Yu Y Y. 2014. Site seismic response analysis based on vertical borehole array records[J]. Earthquake Engineering and Engineering Dynamics,34(2):12–18 (in Chinese).
    高龙生. 1986. 井下地震波学术讨论会暨工作会议于1986年5月在天津举行[J]. 地震学报,8(4):444.
    Gao L S. 1986. The conference on observation by means of borehole seismographs and the related working meeting were held in Tianjin in May of 1986[J]. Acta Seismologica Sinica,8(4):444 (in Chinese).
    宫杰,胡米东,康清清,张敏. 2019. 江苏地区同频带井下地震计地震监测能力对比[J]. 地震地磁观测与研究,40(6):93–99.
    Gong J,Hu M D,Kang Q Q,Zhang M. 2019. Comparative analysis of monitoring capability of underground seismometer in the same frequency band in Jiangsu[J]. Seismological and Geomagnetic Observation and Research,40(6):93–99 (in Chinese).
    郭德顺,陈建涛,谢剑波,叶春明. 2014. 汕头试验井地面与井下环境地噪声对比测试分析[J]. 华南地震,34(3):57–64.
    Guo D S,Chen J T,Xie J B,Ye C M. 2014. The comparison test analysis of environment seismic noise on ground surface and underground at Shantou pilot hole[J]. South China Journal of Seismology,34(3):57–64 (in Chinese).
    郭延杰,于章棣,齐彬彬,屈楠,范东海,黄瑞滨,刘继伟. 2020. 赤峰中心地震台地面与井下地震观测系统监测能力对比分析[J]. 地震地磁观测与研究,41(4):100–104.
    Guo Y J,Yu Z D,Qi B B,Qu N,Fan D H,Huang R B,Liu J W. 2020. Comparative analysis of monitoring capacities of the ground and underground observation systems at Chifeng Center Seismic Station[J]. Seismological and Geomagnetic Observation and Research,41(4):100–104 (in Chinese).
    胡米东. 2014. 江苏省部分井下地震计监测能力差异初探[J]. 四川地震,(4):31–34.
    Hu M D. 2014. Primary study on the monitoring ability of underground seismometers in Jiangsu Province[J]. Earthquake Research in Sichuan,(4):31–34 (in Chinese).
    兰从欣,刘杰,郑斯华,马士振,李菊珍. 2005. 北京地区中小地震震源参数反演[J]. 地震学报,27(5):498–507.
    Lan C X,Liu J,Zheng S H,Ma S Z,Li J Z. 2005. Inversion of source parameters for moderate and small earthquakes in Beijing region[J]. Acta Seismologica Sinica,27(5):498–507 (in Chinese).
    李慧民,朱元清,章纯. 1992. 利用深井地震速度记录确定震级的初步研究[J]. 地震地磁观测与研究,13(5):11–15.
    Li H M,Zhu Y Q,Zhang C. 1992. A primary study on magnitude determination by using the records of deep-hole velocity seismometer[J]. Seismological and Geomagnetic Observation and Research,13(5):11–15 (in Chinese).
    李雷,邓存华,黄瑶,钱文品,谭文正. 2018. 昆明地震台地面与井下地震计地震记录震级偏差[J]. 地震地磁观测与研究,39(4):96–108.
    Li L,Deng C H,Huang Y,Qian W P,Tan W Z. 2018. Analysis of seismic magnitude bias calculated based on the records of the ground and borehole seismometer at Kunming Seismic Station[J]. Seismological and Geomagnetic Observation and Research,39(4):96–108 (in Chinese).
    李少睿,毛国良,王党席,罗治国. 2016. 井下地震计方位角检测技术应用研究[J]. 地球物理学报,59(1):299–310. doi: 10.6038/cjg20160125
    Li S R,Mao G L,Wang D X,Luo Z G. 2016. Research on the application of borehole seismometer azimuth detection technology[J]. Chinese Journal of Geophysics,59(1):299–310 (in Chinese).
    李伟,赵文舟,尹继尧. 2013. 上海深井地震综合观测地磁资料分析[J]. 地震地磁观测与研究,8(3/4):89–95.
    Li W,Zhao W Z,Yin J Y. 2013. Analysis of multi-component geomagnetic data observed in deep borehole in Shanghai[J]. Seismological and Geomagnetic Observation and Research,8(3/4):89–95 (in Chinese).
    李稳,刘伊克,刘保金. 2016. 基于稀疏分布特征的井下微地震信号识别与提取方法[J]. 地球物理学报,59(10):3869–3882. doi: 10.6038/cjg20161030
    Li W,Liu Y K,Liu B J. 2016. Downhole microseismic signal recognition and extraction based on sparse distribution features[J]. Chinese Journal of Geophysics,59(10):3869–3882 (in Chinese).
    李小军,荣棉水,喻烟. 2020. 场地土层模型参数的地震动记录反演方法[J]. 地球物理学报,63(1):236–246. doi: 10.6038/cjg2020M0491
    Li X J,Rong M S,Yu Y. 2020. Inversion for velocity structure of soil layers by seismic acceleration records[J]. Chinese Journal of Geophysics,63(1):236–246 (in Chinese).
    李彦林,郑淑兰. 1989. 涿县台地面与井下地震观测[J]. 华北地震科学,7(1):95–97.
    Li Y L,Zheng S L. 1989. Ground and underground seismic observation at Zhuoxian Station[J]. North China Earthquake Sciences,7(1):95–97 (in Chinese).
    林云松. 1989. 深井观测中的地面反射波震相[J]. 地震地磁观测与研究,10(3):12–20.
    Lin Y S. 1989. Phases of ground surface reflection waves observed in deep well[J]. Seismological and Geomagnetic Observation and Research,10(3):12–20 (in Chinese).
    刘瑞丰,高景春,陈运泰,吴忠良,黄志斌,徐志国,孙丽. 2008. 中国数字地震台网的建设与发展[J]. 地震学报,30(5):533–539. doi: 10.3321/j.issn:0253-3782.2008.05.012
    Liu R F,Gao J C,Chen Y T,Wu Z L,Huang Z B,Xu Z G,Sun L. 2008. Construction and development of digital seismograph networks in China[J]. Acta Seismologica Sinica,30(5):533–539 (in Chinese).
    刘渊源,崇加军,倪四道. 2011. 基于井下摆天然地震数据测量首都圈近地表波速结构[J]. 地震学报,33(3):342–350. doi: 10.3969/j.issn.0253-3782.2011.03.007
    Liu Y Y,Cong J J,Ni S D. 2011. Near surface wave velocity structure in Chinese capital region based on borehole seismic records[J]. Acta Seismologica Sinica,33(3):342–350 (in Chinese).
    罗诚,谢俊举,温增平. 2018. 熊本MW7.0地震近场地表与井下地震动对比研究[J]. 地震学报,40(1):108–120. doi: 10.11939/jass.20170111
    Luo C,Xie J J,Wen Z P. 2018. Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake[J]. Acta Seismologica Sinica,40(1):108–120 (in Chinese).
    毛华锋,张义德,仇中阳,陈健. 2014. 江苏部分测震台井下与地面观测震源参数对比[J]. 四川地震,(3):43–47.
    Mao H F,Zhang Y D,Qiu Z Y,Chen J. 2014. Comparison between the seismic source parameters of borehole observation and ground observation in northern Jiangsu Province[J]. Earthquake Research in Sichuan,(3):43–47 (in Chinese).
    裴晓,尹继尧,杨庭春. 2012. 上海遥测台网各类型台基背景噪声分析[J]. 地球物理学进展,27(5):1897–1903.
    Pei X,Yin J Y,Yang T C. 2012. Shanghai telemetry station network analysis of the various types of background noise pedestal[J]. Progress in Geophysics,27(5):1897–1903 (in Chinese).
    裴晓,尹继尧,杨庭春. 2013. 张江台地表与深井地震观测对比分析[J]. 地震工程学报,35(2):366–371.
    Pei X,Yin J Y,Yang T C. 2013. Comparative analysis of Zhangjiang Station surface and deep seismic observation[J]. China Earthquake Engineering Journal,35(2):366–371 (in Chinese).
    齐诚,赵大鹏,陈颙,陈棋福,王宝善. 2006. 首都圈地区地壳P波和S波三维速度结构及其与大地震的关系[J]. 地球物理学报,49(3):805–815.
    Qi C,Zhao D P,Chen Y,Chen Q F,Wang B S. 2006. 3-D P and S wave velocity structures and their relationship to strong earthquakes in the Chinese capital region[J]. Chinese Journal of Geophysics,49(3):805–815 (in Chinese).
    仇中阳,毛华峰,陈健,胡米东. 2014. 苏北测震台网地面和井下地震记录波形频谱分析[J]. 地震地磁观测与研究,35(3/4):105–111.
    Qiu Z Y,Mao H F,Chen J,Hu M D. 2014. Feature analysis on seismic wave spectrum from ground and underground records by seismic stations in Jiangsu Province[J]. Seismological and Geomagnetic Observation and Research,35(3/4):105–111 (in Chinese).
    沈伟森,罗艳,倪四道,崇加军,陈颙. 2010. 天然地震频率范围内首都圈地区近地表S波速度结构[J]. 地震学报,32(2):137–146.
    Shen W S,Luo Y,Ni S D,Chong J J,Chen Y. 2010. Resolving near surface S velocity structure in natural earthquake frequency band:A case study in Beijing region[J]. Acta Seismologica Sinica,32(2):137–146 (in Chinese).
    石英杰,龙剑锋,赵楠. 2021. 安徽六安井下地震计与地表地震计观测质量对比[J]. 地震地磁观测与研究,42(5):141–144.
    Shi Y J,Long J F,Zhao N. 2021. Comparison of observation quality between downhole seismometer and surface seismometer in Lu’an area[J]. Seismological and Geomagnetic Observation and Research,42(5):141–144 (in Chinese).
    王芳,李丽,王宝善. 2017. 普洱大寨深井噪声压制效果及井孔附近波场特征研究[J]. 地震学报,39(6):831–847.
    Wang F,Li L,Wang B S. 2017. Ability of decreasing noise and the characteristics of near-surface wave field around Dazhai borehole in Pu'er[J]. Acta Seismologica Sinica,39(6):831–847 (in Chinese).
    王俊国,卫鹏飞,吴晓芝. 1988. 井下与地面地震波记录特征的对比研究[J]. 地震学报,10(3):270–279.
    Wang J G,Wei P F,Wu X Z. 1988. Comparative study between the characteristics of seismic waves recorded downhole and on ground surface[J]. Acta Seismologica Sinica,10(3):270–279 (in Chinese).
    王林瑛,郭永霞,刘芳,蒋长胜. 2008. 文安地震前后首都圈分区波速比时变特征[J]. 地震学报,30(3):240–253.
    Wang L Y,Guo Y X,Liu F,Jiang C S. 2008. Temporal vp/vS variation characteristics in different zones of China’s Capital area before and after 2006 Wen’an earthquake[J]. Acta Seismologica Sinica,30(3):240–253 (in Chinese).
    王晓蕾,薛兵,朱小毅,崔仁胜. 2021. 深井共点观测地震波形数据处理技术初探[J]. 地震地磁观测与研究,42(增刊):212–214.
    Wang X L,Xue B,Zhu X Y,Cui R S. 2021. The data processing technology of collocated seismic waveform observed in deep boreholes[J]. Seismological and Geomagnetic Observation and Research,42(S1):212–214 (in Chinese).
    韦庆海,孟宪森,杨家亮,高东辉,郝永梅,刁桂苓,孟令蕾,佟艳英. 2015. 松嫩盆地井下摆记录到的地方震地表反射波[J]. 中国地震,31(2):432–438.
    Wei Q H,Meng X S,Yang J L,Gao D H,Hao Y M,Diao G L,Meng L L,Tong Y Y. 2015. The surface reflection wave of local earthquake record by underground seismographs in the Songnen basin[J]. Earthquake Research in China,31(2):432–438 (in Chinese).
    韦士忠,李玉萍. 1990. 深井观测对测定地震波谱和震源参数的可能影响[J]. 地震地磁观测与研究,11(5):56–62.
    Wei S Z,Li Y P. 1990. Possible effect of deep borehole observation on the determination of seismic spectrum and focal parameters[J]. Seismological and Geomagnetic Observation and Research,11(5):56–62 (in Chinese).
    吴晶,高原,陈运泰,黄金莉. 2007. 首都圈西北部地区地壳介质地震各向异性特征初步研究[J]. 地球物理学报,50(1):209–220. doi: 10.3321/j.issn:0001-5733.2007.01.027
    Wu J,Gao Y,Chen Y T,Huang J L. 2007. Seismic anisotropy in the crust in northwestern capital area of China[J]. Chinese Journal of Geophysics,50(1):209–220 (in Chinese).
    乌统昱,赵惠君. 1992. 井下记录的PP和SS震相[J]. 地震地磁观测与研究,13(2):20–26.
    Wu T Y,Zhao H J. 1992. PP and SS seismic phases recorded from borehole[J]. Seismological and Geomagnetic Observation and Research,13(2):20–26 (in Chinese).
    修济刚. 1988. 我国井下地震观测研究概述[J]. 国际地震动态,(6):1–4.
    Xiu J G. 1988. An outline of research on borehole seismic observations in China[J]. Recent Developments in World Seismology,(6):1–4 (in Chinese).
    徐纪人,赵志新. 2006. 深井地球物理长期观测的最新进展及其前景[J]. 地球科学(中国地质大学学报),31(4):557–563.
    Xu J R,Zhao Z X. 2006. Advances and prospects for long-term geophysical observation in deep borehole[J]. Earth Science:Journal of China University of Geosciences,31(4):557–563 (in Chinese).
    徐纪人,赵志新. 2009. 深井地球物理观测的最新进展与中国大陆科学钻探长期观测[J]. 地球物理学进展,24(4):1176–1182. doi: 10.3969/j.issn.1004-2903.2009.04.003
    Xu J R,Zhao Z X. 2009. Recent advance of borehole geophysical observation and Chinese continental scientific drilling long-term observatory at depth[J]. Progress in Geophysics,24(4):1176–1182 (in Chinese).
    徐纪人,李海兵,曾祥芝,赵志新. 2022. 江苏东海深井观测地震波形及其信噪比研究[J]. 地震学报,44(6):1007–1018. doi: 10.11939/jass.20220195
    Xu J R,Li H B,Zeng X Z,Zhao Z X. 2022. Seismic waveforms and their signal-to-noise ratios of borehole observation in Donghai station,Jiangsu Province[J]. Acta Seismologica Sinica,44(6):1007–1018 (in Chinese).
    徐永林,熊里军,章纯,赵志光. 2002. 用强震仪记录资料研究上海地表土层的地震动放大反应[J]. 地震学报,24(6):662–666.
    Xu Y L,Xiong L J,Zhang C,Zhao Z G. 2002. A study on amplification response of soil ground motion in Shanghai using strong-motion accelerogaph records[J]. Acta Seismologica Sinica,24(6):662–666 (in Chinese).
    徐元耀. 1994. 苏北平原井下摆观测效果的讨论[J]. 地震地磁观测与研究,15(6):31–35.
    Xu Y Y. 1994. The analysis of the efficiency of borehole pendulum observation in the North Jiangsu Plate[J]. Seismological and Geomagnetic Observation and Research,15(6):31–35 (in Chinese).
    叶世元,柳国华. 1987. 上海电信传输地震台网部分深井观测点躁声背景分析[J]. 地震地磁观测与研究,8(2):30–33.
    Ye S Y,Liu G H. 1987. Analysis of the noise background of a part of the deep-well observation points in Shanghai telemeter seismic station network[J]. Seismological And Geomagnetic Observation And Research,8(2):30–33 (in Chinese).
    叶世元,周生良,姜伟荣. 1988. 深井地震观测中地脉动谱的作用[J]. 地震地磁观测与研究,9(1):55–58.
    Ye S Y,Zhou S L,Jiang W R. 1988. The effect of spectrum of earth tremors on seismic observation in deep holes[J]. Seismological and Geomagnetic Observation and Research,9(1):55–58 (in Chinese).
    于湘伟,陈运泰,王培德. 2003. 京津唐地区中上地壳三维P波速度结构[J]. 地震学报,25(1):1–14.
    Yu X W,Chen Y T,Wang P D. 2003. Three-dimensional P wave velocity structure in Beijing-Tianjin-Tangshan area[J]. Acta Seismologica Sinica,25(1):1–14 (in Chinese).
    袁卫红,戴佩新,杜江,朱镇,王宇. 2012. 大庆地震台网近震震级偏差分析与校正[J]. 地震地磁观测与研究,33(2):27–31.
    Yuan W H,Dai P X,Du J,Zhu Z,Wang Y. 2012. Analysis and adjustment of regional seismology magnitude deviation in Daqing Seismic Network[J]. Seismological and Geomagnetic Observation and Research,33(2):27–31 (in Chinese).
    张阿瑶,范广超,王敏超,沈旭峰,张诚鎏,卢娜,崔甲甲. 2018. 不同深度布设台站的噪声及信号幅值特征分析[J]. 地震学报,40(4):440–447. doi: 10.11939/jass.20170150
    Zhang A Y,Fan G C,Wang M C,Shen X F,Zhang C L,Lu N,Cui J J. 2018. Amplitude characteristic analysis of noise and signal from the stations deployed at different depths[J]. Acta Seismologica Sinica,40(4):440–447 (in Chinese).
    章纯,朱元清,李慧民. 1992. 利用深井观测速度型记录的最大振幅测定近震震级的一种方法[J]. 地震地磁观测与研究,13(6):51–59.
    Zhang C,Zhu Y Q,Li H M. 1992. A method to determine the local magnitude using the maximum amplitude of bore-hole velocity records[J]. Seismological and Geomagnetic Observation and Research,13(6):51–59 (in Chinese).
    张明,陈军辉,严俊峰,尹晶飞,戴陈兵. 2019. 浙江省测震观测台网井下地震计方位角检测与校正[J]. 地震地磁观测与研究,40(4):125–129.
    Zhang M,Chen J H,Yan J F,Yin J F,Dai C B. 2019. Detection and correction of azimuth of borehole seismograph in Zhejiang Seismic Network[J]. Seismological and Geomagnetic Observation and Research,40(4):125–129 (in Chinese).
    张寿康,张碧晖,左素军. 1986. 井下与地面地震观测对比研究[J]. 华北地震科学,4(4):79–84.
    Zhang S K,Zhang B H,Zuo S J. 1986. Comparative study in borehole and surface seismic observations[J]. North China Earthquake Sciences,4(4):79–84 (in Chinese).
    张少泉,李凤杰,林云松,郭建明,王博文. 1988. 井下记录振幅随深度变化的对数模型(上)[J]. 地震地磁观测与研究,9(2):77–90.
    Zhang S Q,Li F J,Lin Y S,Guo J M,Wang B W. 1988. A logarithmic model for the change in amplitude of seismic wave with depth recorded in a bore-hole (1)[J]. Seismological and Geomagnetic Observation and Research,9(2):77–90 (in Chinese).
    张少泉,杨懋源,郭建民,朱元清,林云松,王俊国,卫鹏飞,韦世忠. 1992. 深井观测地震波的研究[J]. 中国地震,8(1):83–94.
    Zhang S Q,Yang M Y,Guo J M,Zhu Y Q,Lin Y S,Wang J G,Wei P F,Wei S Z. 1992. A study on the propagation of seismic wave observed by downhole seismometer[J]. Earthquake Research in China,8(1):83–94 (in Chinese).
    张尉,陈棋福,丘学林,陈颙. 2009. 首都圈数字地震台网对微弱爆破信号的检测能力[J]. 地球物理学报,52(3):681–690.
    Zhang W,Chen Q F,Qiu X L,Chen Y. 2009. Weak explosion signal detection by the Beijing metropolitan digital Seismic Network[J]. Chinese Journal of Geophysics,52(3):681–690 (in Chinese),.
    张新东. 2002. 邯郸台网深井摆与地面摆记录分析对比[J]. 地震地磁观测与研究,23(1):65–69.
    Zhang X D. 2002. The analysis and comparison of the record of deep-well pendulum seismgraph and surface pendulum seismgraph of Handan Seismic Station Net[J]. Seismological and Geomagnetic Observation and Research,23(1):65–69 (in Chinese).
    赵惠君,田真丽,乌统昱. 1991. 天津遥测地震台网井下地震波地动位移与地动速度记录的对比分析[J]. 地震地磁观测与研究,12(2):54–60.
    Zhao H J,Tian Z L,Wu T Y. 1991. Comparative analysis between ground motion displacement of seismic waves and records of seismic velocity from borehole of the Tianjin Telemetered Seismic Network[J]. Seismological and Geomagnetic Observation and Research,12(2):54–60 (in Chinese).
    赵瑞胜,危自根,闫新义,黄瑜. 2021. 喀什基准台宽频带井下和地表地震计记录数据对比研究[J]. 中国地震,37(4):898–907. doi: 10.3969/j.issn.1001-4683.2021.04.015
    Zhao R S,Wei Z G,Yan X Y,Huang Y. 2021. Earthquake waveform comparison of broadband records between borehole and ground seismometers in Kashi seismic station[J]. Earthquake Research in China,37(4):898–907 (in Chinese).
    郑德高,倪四道,杨卓欣,刘志. 2018. 井下地震计的P波接收函数正演计算及其稳定性研究:以首都圈地区为例[J]. 地球物理学报,61(10):3964–3979. doi: 10.6038/cjg2018M0027
    Zheng D G,Ni S D,Yang Z X,Liu Z. 2018. Stability of receiver function from borehole seismometer from forward modeling and case study of waveform data in China Capital Region[J]. Chinese Journal of Geophysics,61(10):3964–3979 (in Chinese).
    周焕鹏. 1986. 深井摆与地面摆的记录差异[J]. 地震地磁观测与研究,7(6):65–72.
    Zhou H P. 1986. Differences between recordings made by deep well pendulum and ground pendulum[J]. Seismological and Geomagnetic Observation and Research,7(6):65–72 (in Chinese).
    朱音杰,刘丽,杜航,丁成,刘檀,石磊. 2020. 利用井下摆近震记录研究华北盆地沉积层速度结构[J]. 华北地震科学,38(3):44–48.
    Zhu Y J,Liu L,Du H,Ding C,Liu T,Shi L. 2020. Velocity structure of sedimentary layer in North China basin based on downhole seismic records[J]. North China Earthquake Sciences,38(3):44–48 (in Chinese).
    朱雅山,李永勤. 1992. 淮阴台井下测震震级偏差初探[J]. 地震地磁观测与研究,13(6):39–42.
    Zhu Y S,Li Y Q. 1992. The preliminary investigation to the deviation of the magnitude for bore-hole seismometry records in Huaiying Seismic Station[J]. Seismological and Geomagnetic Observation and Research,13(6):39–42 (in Chinese).
    Abercrombie R E. 1997. Near-surface attenuation and site effects from comparison of surface and deep borehole recordings[J]. Bull Seismol Soc Am,87(3):731–744.
    Aster R C,Shearer P M. 1991. High-frequency borehole seismograms recorded in the San Jacinto fault zone,southern California. Part 1. Polarizations[J]. Bull Seismol Soc Am,81(4):1057–1080. doi: 10.1785/BSSA0810041057
    Baisch S,Bohnhoff M,Ceranna L,Tu Y M,Harjes H P. 2002. Probing the crust to 9-km depth:Fluid-injection experiments and induced seismicity at the KTB superdeep drilling hole,Germany[J]. Bull Seismol Soc Am,92(6):2369–2380. doi: 10.1785/0120010236
    Hollender F,Theodoulidis N,Mariscal A,Chaudat T,Steidl J,Bard P Y,Roumelioti Z. 2023. The “Glass Beads” coupling solution for borehole and posthole accelerometers:Shaking table tests and field retrievability[J]. Seismol Res Lett,94(2A):925–934.
    Hung R J,Ma K F,Song T R A,Lin Y Y,Weingarten M. 2022. Observation of temporal variations in seismic anisotropy within an active fault-zone revealed from the Taiwan Chelungpu-fault Drilling Project Borehole seismic array[J]. J Geophys Res:Solid Earth,127(4):e2021JB023050. doi: 10.1029/2021JB023050
    Lay V,Buske S,Bodenburg S B,Townend J,Kellett R,Savage M K,Schmitt D R,Constantinou A,Eccles J D,Bertram M,Hall K,Lawton D,Gorman A R,Kofman R S. 2020. Seismic P wave velocity model from 3-D surface and borehole seismic data at the Alpine fault DFDP-2 drill site (Whataroa,New Zealand)[J]. J Geophys Res:Solid Earth,125(4):e2019JB018519. doi: 10.1029/2019JB018519
    Ma K F. 2021. A review of the 1999 Chi-Chi,Taiwan,earthquake from modeling,drilling,and monitoring with the Taiwan Chelungpu-fault Drilling Project[M]//Earthquake Geology and Tectonophysics around Eastern Tibet and Taiwan. Singapore:Springer:63−82.
    Oye V,Chavarria J A,Malin P E. 2004. Determining SAFOD area microearthquake locations solely with the Pilot Hole seismic array data[J]. Geophys Res Lett,31(12):L12S10.
    Riga E,Hollender F,Roumelioti Z,Bard P Y,Pitilakis K. 2019. Assessing the applicability of deconvolution of borehole records for determining near-surface shear-wave attenuation[J]. Bull Seismol Soc Am,109(2):621–635. doi: 10.1785/0120180298
    Shearer P M,Abercrombie R E. 2021. Calibrating spectral decomposition of local earthquakes using borehole seismic records:Results for the 1992 big Bear aftershocks in Southern California[J]. J Geophys Res:Solid Earth,126(3):e2020JB020561. doi: 10.1029/2020JB020561
    Stephenson W J,Louie J N,Pullammanappallil S,Williams R A,Odum J K. 2005. Blind shear-wave velocity comparison of ReMi and MASW results with boreholes to 200 m in Santa Clara Valley:Implications for earthquake ground-motion assessment[J]. Bull Seismol Soc Am,95(6):2506–2516. doi: 10.1785/0120040240
    Takahashi H,Hamada K. 1975. Deep borehole observation of the Earth's crust activities around Tokyo-introduction of the Iwatsuki observatory[J]. Pure Appl Geophys,113(1):311–320. doi: 10.1007/BF01592920
    Xu J R,Zhao Z X,Zeng X Z,Pi J Y. 2016. Long-term geophysical observations and analysis of the world’s deepest borehole[J]. Acta Geologica Sinica (English Edition),90(3):1061–1062.
    Yamauchi T,Ishii H,Asai Y,Okubo M,Matsumoto S,Azuma S I. 2005. Development of deep borehole instruments for both multi-component observation and in situ stress measurement,and some interesting results obtained[J]. Zisin (J Seismol Soc Japan. 2nd Ser.),58(1):1–14.
    Zeng X Z,Yang W C. 2021. Impact of post-earthquake seismic waves on the terrestrial environment[J]. Appl Sci,11(14):6606. doi: 10.3390/app11146606
    Zhao Z X,Xu J R,Ryuji K. 2004. Effects of soil amplification ratio and multiple wave interference for ground motion due to earthquake[J]. Chinese Science Bulletin,49(22):2405–2414. doi: 10.1007/BF03183430
    Zoback M,Hickman S,Ellsworth W,The SAFOD Science Team. 2011. Scientific drilling into the San Andreas fault zone:An overview of SAFOD's first five years[J]. Sci Dril,11:14–28.

Catalog

    Article views (120) PDF downloads (57) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return