Citation: | Xing H J,Li H J,Nan R R. 2025. A state-of-the-art review of the numerical simulation of seismic wave motion based on spectral element method. Acta Seismologica Sinica,47(0):1−39. DOI: 10.11939/jass.20240112 |
The spectral element method (SEM)-based numerical simulation of seismic wave motion has been widely applied in the study of earthquake source rupture process, large-scale seismic wave propagation, seismic response of regional complex sites without/with engineering structures (systems), seismic tomography, and so forth. This technique is currently a frontier hotspot of common concern in the fields of earthquake science and technology including earthquake engineering, seismology, geophysics, et al. Spectral element method, which is sometimes also termed as spectral finite element method (SPECFEM) or spectral/hp element method, is a combination of spectral method and finite element method (FEM). Hence, it shares the advantages of both the two methods, i.e., the high accuracy and fast convergence of spectral method, and the regularity and flexibility of FEM.
In early times, the Chebyshev spectral element method (CSEM) and Legendre spectral element method (LSEM) are originated from the domain decomposition of spectral methods, and therefore they inherit the complicated formulations of the latter, in which each of the interpolation basis functions is a linear combination of Chebyshev or Legendre orthogonal polynomials. Consequently, both the methods are as accurate as the spectral methods, but their applications are severely limited by the cumbersome and inefficient multi-layer nested computational structure that is resulted from those basis functions. Nowadays, the most frequently-used SEM is a concise form of LSEM developed by Komatitsch et al. In this method, the early-used complicated basis functions are simplified to the Lagrange shape functions that are commonly adopted in FEM, and those orthogonal polynomial-based analytical Gauss-Lobatto-Legendre (GLL) quadrature formulae are replaced by a simple numerical list of the GLL point coordinates and integration weights. Specifically, the non-equally distributed GLL points serve as the element nodes and the GLL high-precision numerical integration formula is applied to calculate the element mass, stiffness matrices and etc. This configuration makes the LSEM enjoy the same solution procedure and computational formulations as that of FEM, but avoid the significant defects of the classical high-order finite element method, including the intrinsic numerical error of the high-order polynomial interpolation based on equally-spaced grid and the lower computational efficiency due to the high-order consistent mass matrix. In a word, this LSEM has actually become a high-performance lumped-mass high-order finite element method. In addition to the above methods, the family of non-conforming spectral element methods has also been broadly studied and successfully applied in many problems, making themselves an important branch of the SEM. By introducing the so-called Lagrange multiplier or interior penalty term as a glue to effectively connect spectral elements with quite diffetent sizes, orders, shapes and so on, the non-conforming SEMs are more flexible and highly efficient in dealing with multi-scale or discontinuous problems, which apear frequently in large-scale or complicated seismic wave simulations.
The great success of SEM is not only due to the high accuracy, regularity and flexibility of the algorithm itself, but also attributed to those well-designed open-source SEM programs represented by SPECFEM2D/3D, SPECFEM_GLOBE, SPEED, etc. have incorporated a variety of key technologies that are required in complex simulations, such as three-dimensional complex models, different seismic source models or plane wave input method, large-scale parallel computing, global simulation, adjoint method, multi-scale or discontinuous modeling and so on. In the field of earthquake engineering, the SEM has been applied to perform physics-based deterministic numerical simulation of strong ground motion and to realize the “end-to-end” seismic response analysis that is from the source rupture to engineering structures or even engineering systems. The massive simulation data is a good supplement to the insufficient strong ground motion records, and the modeling of seismic wave propagation in actual geolocial structures can compensate for the weak physical background of traditional ground motion prediction equations (GMPEs) or stochastic methods. These simulations, which have reached a certain level of reliability, bring new vitality to earthquake engineering research and application. In the fields of seismology or geophysics, the highly-efficient forward simulation of SEM has been combined with the adjoint method, enabling a simultaneous modeling of the seismic wave fields generated from a number of observation stations, thus the number of forward simulations required for an inversion process can be reduced to an acceptable level. In this way, the advanced full wave inversion (FWI) or seismic tomography technique has been practically used to investigate seismic source mechanisms and to reveal regional or even global velocity structures. Finally, the development of SEM in China is elaborated. The SEM was introduced into China around the year of 2000, and the related studies mainly focused on the basic performance of the method and some preliminary applications until early 2010 s. In the past decade, the Chinese researchers have been conducting more and more innovative work on the SEM algorithms and various engineering applications, and some of the work has reached the research forefront of the world.
巴振宁,赵靖轩,桑巧稚,梁建文. 2024. 基于Davidenkov本构模型的三维沉积盆地非线性地震动谱元法模拟[J]. 岩土工程学报,46(7):1387–1397. doi: 10.11779/CJGE20230582
|
Ba Z N,Zhao J X,Sang Q Z,Liang J W. 2024. Nonlinear ground motion simulation of three-dimensional sedimentary basin based on Davidenkov constitutive model and spectral element method[J]. Chinese Journal of Geotechnical Engineering,46(7):1387–1397 (in Chinese).
|
巴振宁,赵靖轩,张郁山,梁建文,张玉洁. 2023. 基于GP14.3运动学混合震源模型和SPECFEM3D谱元法的宽频地震动模拟[J]. 地球物理学报,66(3):1125–1138. doi: 10.6038/cjg2022Q0181
|
Ba Z N,Zhao J X,Zhang Y S,Liang J W,Zhang Y J. 2023. Broadband ground motion spectral element simulation based on GP14.3 kinematic hybrid source model and SPECFEM3D[J]. Chinese Journal of Geophysics,66(3):1125–1138 (in Chinese).
|
曹丹平,周建科,印兴耀. 2015. 三角网格有限元法波动模拟的数值频散及稳定性研究[J]. 地球物理学报,58(5):1717–1730. doi: 10.6038/cjg20150522
|
Cao D P,Zhou J K,Yin X Y. 2015. The study for numerical dispersion and stability of wave motion with triangle-based finite element algorithm[J]. Chinese Journal of Geophysics,58(5):1717–1730 (in Chinese).
|
车承轩. 2007. 谱元法模拟起伏自由表面地层中的弹性波传播[D]. 大庆:大庆石油学院:1−49.
|
Che C X. 2007. The Spectral Element Method for Elastic Wave Simulation in a Formation with a Topographic Traction Free Surface[D]. Daqing:Daqing Petroleum Institute:1−49 (in Chinese).
|
陈少林,程书林,柯小飞. 2019b. 海洋地震工程流固耦合问题统一计算框架——不规则界面情形[J]. 力学学报,51(5):1517–1529.
|
Chen S L,Cheng S L,Ke X F. 2019b. A unified computational framework for fluid-solid coupling in marine earthquake engineering:Irregular interface case[J]. Chinese Journal of Theoretical and Applied Mechanics,51(5):1517–1529.
|
陈少林,柯小飞,张洪翔. 2019a. 海洋地震工程流固耦合问题统一计算框架[J]. 力学学报,51(2):594–606.
|
Chen S L,Ke X F,Zhang H X. 2019a. A unified computational framework for fluid-solid coupling in marine earthquake engineering[J]. Chinese Journal of Theoretical and Applied Mechanics,51(2):594–606.
|
戴志军,李小军,侯春林. 2015. 谱元法与透射边界的配合使用及其稳定性研究[J]. 工程力学,32(11):40–50. doi: 10.6052/j.issn.1000-4750.2014.03.0196
|
Dai Z J,Li X J,Hou C L. 2015. A combination usage of transmitting formula and spectral element method and the study of its stability[J]. Engineering Mechanics,32(11):40–50 (in Chinese).
|
董兴朋,杨顶辉. 2017. 球坐标系下谱元法三维地震波场模拟[J]. 地球物理学报,60(12):4671–4680. doi: 10.6038/cjg20171211
|
Dong X P,Yang D H. 2017. Numerical modeling of the 3-D seismic wave field with the spectral element method in spherical coordinates[J]. Chinese Journal of Geophysics,60(12):4671–4680 (in Chinese).
|
贺春晖,王进廷,张楚汉. 2017. 基于震源-河谷波场数值模拟的坝址地震动参数确定方法[J]. 地球物理学报,60(2):585–592. doi: 10.6038/cjg20170213
|
He C H,Wang J T,Zhang C H. 2017. Determination of seismic parameters for dam sites by numerical simulation of the rupture-canyon wave field[J]. Chinese Journal of Geophysics,60(2):585–592 (in Chinese).
|
胡元鑫,刘新荣,罗建华,张梁,葛华. 2011. 汶川震区地震动三维地形效应的谱元法模拟[J]. 兰州大学学报(自然科学版),47(4):24–32.
|
Hu Y X,Liu X R,Luo J H,Zhang L,Ge H. 2011. Simulation of three-dimensional topographic effects on seismic ground motion in Wenchuan earthquake region based upon the spectral-element method[J]. Journal of Lanzhou University (Natural Sciences),47(4):24–32 (in Chinese).
|
蒋涵,周红,高孟潭. 2015. 山脊线与坡度和峰值速度放大系数的相关性研究[J]. 地球物理学报,58(1):229–237. doi: 10.6038/cjg20150120
|
Jiang H,Zhou H,Gao M T. 2015. A study on the correlation of the ridge line and slope with peak ground velocity amplification factor[J]. Chinese Journal of Geophysics,58(1):229–237 (in Chinese).
|
孔曦骏,邢浩洁,李鸿晶. 2022. 流固耦合地震波动问题的显式谱元模拟方法[J]. 力学学报,54(9):2513–2528. doi: 10.6052/0459-1879-22-068
|
Kong X J,Xing H J,Li H J. 2022. An explicit spectral-element approach to fluid-solid coupling problems in seismic wave propagation[J]. Chinese Journal of Theoretical and Applied Mechanics,54(9):2513–2528 (in Chinese).
|
李冰非,董兴朋,李小凡,司洁戈. 2019. 基于辛-谱元-FK 混合方法的保结构远震波场模拟[J]. 地球物理学报,62(11):4339–4352. doi: 10.6038/cjg2019M0688
|
Li B F,Dong X P,Li X F,Si J G. 2019. Structure-preserving modeling of teleseismic wavefield using symplectic SEM-FK hybrid method[J]. Chinese Journal of Geophysics,62(11):4339–4352 (in Chiese).
|
李冰非,李小凡,李峰,龚飞. 2021. 基于辛-谱元方法的地球自由振荡保弥散衰减数值模拟[J]. 地球物理学报,64(11):4022–4030. doi: 10.6038/cjg2021P0019
|
Li B F,Li X F,Li F,Gong F. 2021. Dissipation preserving simulation for Earth’s free oscillations based on symplectic spectral element method[J]. Chinese Journal of Geophysics,64(11):4022–4030 (in Chinese).
|
李昊臻,刘少林,董兴朋,蒙伟娟,杨顶辉. 2024. 基于逐元和轴对称谱元的混合方法及远震波场模拟[J]. 地球物理学报,67(5):1819–1831. doi: 10.6038/cjg2023R0180
|
Li H Z,Liu S L,Dong X P,Meng W J,Yang D H. 2024. Hybrid method based on element-by-element and axisymmetric spectral element method for teleseismic wavefield simulation[J]. Chinese Journal of Geophysics,67(5):1819–1831 (in Chinese).
|
李鸿晶,王竞雄. 2022. 时域谱元法的质量特性模型及其构建方法[J]. 地震学报,44(1):60–75. doi: 10.11939/jass.20210117
|
Li H J,Wang J X. 2022. The mass property model and its implementation in the time-domain spectral element method[J]. Acta Seismologica Sinica,44(1):60–75 (in Chinese).
|
李琳,刘韬,胡天跃. 2014. 三角谱元法及其在地震正演模拟中的应用[J]. 地球物理学报,57(4):1224–1234. doi: 10.6038/cjg20140419
|
Li L,Liu T,Hu T Y. 2014. Spectra element method with triangular mesh and its application in seismic modeling[J]. Chinese Journal of Geophysics,57(4):1224–1234 (in Chinese).
|
李孝波. 2014. 基于谱元法的玉田震害异常研究[D]. 哈尔滨:中国地震局工程力学研究所:1−136.
|
Li X B. 2014. The Investigation of Seismic Damage Anomaly in Yutian based on Spectral Element Method[D]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration:1−136 (in Chinese).
|
林伟军,苏畅,Seriani G. 2018. 多网格谱元法及其在高性能计算中的应用[J]. 应用声学,37(1):42–52. doi: 10.11684/j.issn.1000-310X.2018.01.007
|
Lin W J,Su C,Seriani G. 2018. The poly-grid spectral element method and its application in high performance computing[J]. Journal of Applied Acoustics,37(1):42–52 (in Chinese).
|
林伟军,王秀明,张海澜. 2005. 用于弹性波方程模拟的基于逐元技术的谱元法[J]. 自然科学进展,15(9):1048–1057. doi: 10.3321/j.issn:1002-008X.2005.09.004
|
Lin W J,Wang X M,Zhang H L. 2005. An element-by-element spectral element method for the modeling of elastic wave equation[J]. Progress in Natural Science,15(9):1048–1057 (in Chinese).
|
林伟军. 2007. 弹性波传播模拟的Chebyshev谱元法[J]. 声学学报,32(6):525–533. doi: 10.3321/j.issn:0371-0025.2007.06.007
|
Lin W J. 2007. A Chebyshev spectral element method for elastic wave modeling[J]. Acta Acustica,32(6):525–533 (in Chinese).
|
刘晶波,廖振鹏. 1989. 离散网格中的弹性波动(Ⅱ)--几种有限元离散模型的对比分析[J]. 地震工程与工程振动, 9 (2):1−11.
|
Liu J B,Liao Z P. 1989. Elastic wave motion in discrete grids (II) – Comparison of common finite element models[J]. Earthquake Engineering and Engineering Vibration,9(2):1–11 (in Chinese).
|
刘晶波,廖振鹏. 1990. 离散网格中的弹性波动(Ⅲ)--时域离散化对波传播规律的影响[J]. 地震工程与工程振动, 10 (2):1−10.
|
Liu J B,Liao Z P. 1990. Elastic wave motion in discrete grids (III) – The effect of discretization in time domain on wave motion[J]. Earthquake Engineering and Engineering Vibration,10(2):1–10 (in Chinese).
|
刘启方,于彦彦,章旭斌. 2013. 施甸盆地三维地震动研究[J]. 地震工程与工程振动,33(4):54–60.
|
Liu Q F,Yu Y Y,Zhang X B. 2013. Three-dimensional ground motion simulation of Shidian basin[J]. Journal of Earthquake Engineering and Engineering Vibration,33(4):54–60 (in Chinese).
|
刘少林,李小凡,刘有山,朱童,张美根. 2014. 三角网格有限元法声波与弹性波模拟频散分析[J]. 地球物理学报,57(8):2620–2630. doi: 10.6038/cjg20140821
|
Liu S L,Li X F,Liu Y S,Zhu T,Zhang M G. 2014. Dispersion analysis of triangle-based finite element method for acoustic and elastic wave simulations[J]. Chinese Journal of Geophysics,57(8):2620–2630 (in Chinese).
|
刘少林,杨顶辉,孟雪莉,汪文帅,徐锡伟,李小凡. 2022. 模拟地震波传播的优化质量矩阵Legendre谱元法[J]. 地球物理学报,65(12):4802–4815. doi: 10.6038/cjg2022Q0145
|
Liu S L,Yang D H,Meng X L,Wang W S,Xu X W,Li X F. 2022. A Legendre spectral element method with optimal mass matrix for seismic wave modeling[J]. Chinese Journal of Geophysics,65(12):4802–4815 (in Chinese).
|
刘少林,杨顶辉,徐锡伟,李小凡,申文豪,刘有山. 2021. 模拟地震波传播的三维逐元并行谱元法[J]. 地球物理学报,64(3):993–1005. doi: 10.6038/cjg2021O0405
|
Liu S L,Yang D H,Xu X W,Li X F,Shen W H,Liu Y S. 2021. Three-dimensional element-by-element parallel spectral-element method for seismic wave modeling[J]. Chinese Journal of Geophysics,64(3):993–1005 (in Chinese).
|
刘有山,刘少林,张美根,马德堂. 2012. 一种改进的二阶弹性波动方程的最佳匹配层吸收边界条件[J]. 地球物理学进展,27(5):2113. doi: 10.6038/j.issn.1004-2903.2012.05.036
|
Liu Y S,Liu S L,Zhang M G,Ma D T. 2012. An improved perfectly matched layer absorbing boundary condition for second order elastic wave equation[J]. Progress in Geophysics,27(5):2113 (in Chinese).
|
刘有山,滕吉文,徐涛,刘少林,司芗,马学英. 2014. 三角网格谱元法地震波场数值模拟[J]. 地球物理学进展,29(4):1715–1726. doi: 10.6038/pg20140430
|
Liu Y S,Teng J W,Xu T,Liu S L,Si X,Ma X Y. 2014. Numerical modeling of seismic wavefield with the SEM based on triangles[J]. Progress in Geophysics,29(4):1715–1726 (in Chinese).
|
陆新征,田源,许镇,熊琛. 2021. 城市抗震弹塑性分析[M]. 北京:清华大学出版社:237−317.
|
Lu X Z,Tian Y,Xu Z,Xiong C. 2021. Elastoplastic Analysis of Urban Seismic Resistance[M]. Beijing:Tsinghua University Press:237−317 (in Chinese).
|
孟雪莉,刘少林,杨顶辉,汪文帅,徐锡伟,李小凡. 2022. 基于优化数值积分的谱元法模拟地震波传播[J]. 石油地球物理勘探,57(3):602–612.
|
Meng X L,Liu S L,Yang D H,Wang W S,Xu X W,Li X F. 2022. Simulating seismic wave propagation using spectral element method based on optimized numerical integration[J]. Geophysical Exploration of Petroleum,57(3):602–612 (in Chinese).
|
秦国良,徐忠. 2000. 谱元方法求解二维不可压缩Navier-Stokes方程[J]. 应用力学学报,17(4):20–25. doi: 10.3969/j.issn.1000-4939.2000.04.004
|
Qin G L,Xu Z. 2000. A spectral element method for incompressible Navier-Stokes equations[J]. Chinese Journal of Applied Mechanics,17(4):20–25 (in Chinese).
|
秦国良,徐忠. 2001. 谱元方法求解正方形封闭空腔内的自然对流换热[J]. 计算物理,18(2):119–124. doi: 10.3969/j.issn.1001-246X.2001.02.005
|
Qin G L,Xu Z. 2001. Computation of natural convection in two-dimensional cavity using spectral element method[J]. Chinese Journal of Computational Physics,18(2):119–124 (in Chinese).
|
任骏声,张怀,周元泽,张振,石耀霖. 2024. 基于卷积滤波的谱元法在长时程波场模拟中的应用[J]. 地球物理学报,67(5):1832–1838. doi: 10.6038/cjg2022Q0160
|
Ren J S,Zhang H,Zhou Y Z,Zhang Z,Shi Y L. 2024. Application of spectral element method based on convolving filtering in long-term wavefield modeling[J]. Chinese Journal of Geophysics,67(5):1832–1838 (in Chinese).
|
唐杰. 2011. 气枪激发信号传播的谱元法数值模拟研究[J]. 地球物理学报,54(9):2348–2356. doi: 10.3969/j.issn.0001-5733.2011.09.018
|
Tang J. 2011. Study on SEM numerical simulation of airgun signal transition[J]. Chinese Journal of Geophysics,54(9):2348–2356 (in Chinese).
|
汪文帅,李小凡,鲁明文,张美根. 2012. 基于多辛结构谱元法的保结构地震波场模拟[J]. 地球物理学报,55(10):3427–3439. doi: 10.6038/j.issn.0001-5733.2012.10.026
|
Wang W S,Li X F,Lu M W,Zhang M G. 2012. Structure-preserving modeling for seismic wave fields based on a multisymplectic spectral element method[J]. Chinese Journal of Geophysics,55(10):3427–3439 (in Chinese).
|
汪文帅,李小凡. 2013. 基于辛格式的谱元法及其在横向各向同性介质波场模拟中的应用[J]. 数值计算与计算机应用,34(1):20–30. doi: 10.3969/j.issn.1000-3266.2013.01.003
|
Wang W S,Li X F. 2013. The SEM based on symplectical schemes and its application in modeling the wave propagation in transversely isotropic media[J]. Journal on Numerical Methods and Computer Applications,34(1):20–30 (in Chinese).
|
汪文帅,张怀,李小凡. 2013. 间断的 Galerkin 方法在地震波场数值模拟中的应用概述[J]. 地球物理学进展,28(1):171–179. doi: 10.6038/pg20130118
|
Wang W S,Zhang H,Li X F. 2013. Review on application of the discontinuous Galerkin method for modeling of the seismic wavefield[J]. Progress in Geophysics,28(1):171–179 (in Chinese).
|
王竞雄,李鸿晶,邢浩洁. 2022. 水平成层场地地震反应的集中质量切比雪夫谱元分析方法[J]. 地震学报,44(1):76–86. doi: 10.11939/jass.20210091
|
Wang J X,Li H J,Xing H J. 2022. The Lumped mass Chebyshev spectral element method for seismic response analysis of horizontally layered soil sites[J]. Acta Seismologica Sinica,44(1):76–86 (in Chinese).
|
王童奎,李瑞华,李小凡,张美根,龙桂华. 2007. 横向各向同性介质中地震波场谱元法数值模拟[J]. 地球物理学进展,22(3):778–784. doi: 10.3969/j.issn.1004-2903.2007.03.018
|
Wang T K,Li R H,Li X F,Zhang M G,Long G H. 2007. Numerical spectral element modeling for seismic wave propagation in transversely isotropic medium[J]. Progress in Geophysics,22(3):778–784 (in Chinese).
|
王童奎,谢占安,付兴深,高文中,刘萱. 2009. 弹性介质中谱元法叠后逆时偏移方法研究[J]. 石油物探,48(4):354–358. doi: 10.3969/j.issn.1000-1441.2009.04.006
|
Wang T K,Xie Z A,Fu X S,Gao W Z,Liu X. 2009. Research on post-stack reverse-time migration in elastic media based on spectral element method[J]. Geophysical Prospecting for Petroleum,48(4):354–358 (in Chinese).
|
王秀明,Seriani G,林伟军. 2007. 利用谱元法计算弹性波场的若干理论问题[J]. 中国科学:G辑,37(1):41–59.
|
Wang X M,Seriani G,Lin W J. 2007. Several theoretical issues on the spectral-element calculation of elastic wave field[J]. Science China Series G,37(1):41–59 (in Chinese).
|
向新民. 2000. 谱方法的数值分析[M]. 北京:科学出版社:1−327.
|
Xiang X M. 2000. Numerical Analysis of Spectral Methods[M]. Beijing:Science Press:1−327 (in Chinese).
|
谢志南,章旭斌. 2017,弱形式时域完美匹配层[J]. 地球物理学报, 60 (10):3823−3831.
|
Xie Z N,Zhang X B. 2017. Weak-form time-domain perfectly matched layer[J]. Chinese Journal of Geophysics,60(10):3823–3831 (in Chinese).
|
谢志南,郑永路,章旭斌,唐丽华. 2019. 弱形式时域完美匹配层——滞弹性近场波动数值模拟[J]. 地球物理学报,62(8):3140–3154. doi: 10.6038/cjg2019M0425
|
Xie Z N,Zheng Y L,Zhang X B,Tang L H. 2019. Weak-form time-domain perfectly matched layer for numerical simulation of viscoelastic wave propagation in infinite domain[J]. Chinese Journal of Geophysics,62(8):3140–3154 (in Chinese).
|
谢志南,郑永路,章旭斌. 2018. 常Q滞弹性介质地震波动数值模拟——时域本构优化逼近[J]. 地球物理学报,61(10):4007–4020. doi: 10.6038/cjg2018L0704
|
Xie Z N,Zheng Y L,Zhang X B. 2018. Optimized approximation for constitution of constant Q viscoelastic media in time domain seismic wave simulation[J]. Chinese Journal of Geophysics,61(10):4007–4020 (in Chinese).
|
邢浩洁,李鸿晶,李小军. 2021a. 一维波动有限元模拟中透射边界的时域稳定条件[J]. 应用基础与工程科学学报,29(3):617–632.
|
Xing H J,Li H J,Li X J. 2021a. Time-domain stability conditions of multi-transmitting formula in one-dimensional finite element simulation of wave motion[J]. Journal of Basic Science and Engineering,29(3):617–632 (in Chinese).
|
邢浩洁,李鸿晶,杨笑梅. 2017. 基于切比雪夫谱元模型的成层场地地震反应分析[J]. 岩土力学,38(2):593–600.
|
Xing H J,Li H J,Yang X M. 2017. Seismic response analysis of horizontal layered soil sites based on Chebyshev spectral element model[J]. Rock and Soil Mechanics,2017, 38 (2):593−600 (in Chinese).
|
邢浩洁,李鸿晶. 2017a. 透射边界条件在波动谱元模拟中的实现:一维波动[J]. 力学学报,49(2):367–379.
|
Xing H J,Li H J. 2017b. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method:One dimension case[J]. Chinese Journal of Theoretical and Applied Mechanics,49(2):367–379 (in Chinese).
|
邢浩洁,李鸿晶. 2017b. 透射边界条件在波动谱元模拟中的实现:二维波动[J]. 力学学报,49(4):894–906.
|
Xing H J,Li H J. 2017b. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method:Two dimension case[J]. Chinese Journal of Theoretical and Applied Mechanics,49(4):894–906 (in Chinese).
|
邢浩洁,李鸿晶. 2017c. 波动切比雪夫谱元模拟的时间积分方法研究[J]. 南京工业大学学报(自然科学版),39(2):70–76.
|
Xing H J,Li H J. 2017c. Investigation of time integration method for Chebyshev spectral element simulation of wave motion[J]. Journal of Nanjing Tech University (Natural Science Edition),39(2):70–76 (in Chinese).
|
邢浩洁,李小军,刘爱文,李鸿晶,周正华,陈苏. 2021b. 波动数值模拟中的外推型人工边界条件[J]. 力学学报,53(5):1480–1495.
|
Xing H J,Li X J,Liu A W,Li H J,Zhou Z H,Chen S. 2021. Extrapolation-type artificial boundary conditions in the numerical simulation of wave motion[J]. Chinese Journal of Theoretical and Applied Mechanics,53(5):1480–1495 (in Chinese).
|
邢浩洁,刘爱文,李小军,陈苏,傅磊. 2022. 多人工波速优化透射边界在谱元法地震波动模拟中的应用[J]. 地震学报,44(1):26–39. doi: 10.11939/jass.20210090
|
Xing H J,Liu A W,Li X J,Chen S,Fu L. 2022. Application of an optimized transmitting boundary with multiple artificial wave velocities in spectral-element simulation of seismic wave propagation[J]. Acta Seismologica Sinica,44(1):26–39 (in Chinese).
|
许传炬,林玉闽. 2000. Poiseuille-Bénard流的出口边界条件及其谱元法计算[J]. 力学学报,32(1):1–10. doi: 10.3321/j.issn:0459-1879.2000.01.001
|
Xu C J,Lin Y M. 2000. Open boundary conditions in simulation by spectral element methods of Poiseuille-Bénard channel flow[J]. Chinese Journal of Theoretical and Applied Mechanics,32(1):1–10 (in Chinese).
|
严珍珍,张怀,杨长春,石耀霖. 2009. 汶川大地震地震波传播的谱元法数值模拟研究[J]. 中国科学:D辑,39(4):393–402.
|
Yan Z Z,Zhang H,Yang C C,Shi Y L. 2009. Study on the seismic wave propagation of the great Wenchuan earthquake by using the numerical simulation of spectral element method[J]. Science China Series D,39(4):393–402 (in Chinese).
|
于彦彦,丁海平,刘启方. 2017. 透射边界与谱元法的结合及对波动模拟精度的改进[J]. 振动与冲击, 36 (2):13−22.
|
Yu Y Y,Ding H P,Liu Q F. 2017. Integration of transmitting boundary and spectral element method and improvement on the accuracy of wave motion simulation[J]. Journal of Vibration and Shock, 36 (2):13−22 (in Chinese).
|
于彦彦,芮志良,丁海平. 2023. 三维局部场地地震波散射问题谱元并行模拟方法[J]. 力学学报,55(6):1342–1354. doi: 10.6052/0459-1879-23-052
|
Yu Y Y,Rui Z L,Ding H P. 2023. Parallel spectral element method for 3d local-site ground motion simulations of wave scattering problem[J]. Chinese Journal of Theoretical and Applied Mechanics,55(6):1342–1354 (in Chinese).
|
章旭斌,谢志南. 2022. 波动谱元模拟中透射边界稳定性分析[J]. 工程力学,39(10):26–35. doi: 10.6052/j.issn.1000-4750.2021.06.0428
|
Zhang X B,Xie Z N. 2022. Stability analysis of transmitting boundary in wave spectral element simulation[J]. Engineering Mechanics,39(10):26–35 (in Chinese).
|
赵靖轩,巴振宁,阔晨阳,刘博佳. 2023. 2022年9月5日泸定MS6.8地震宽频带地震动谱元法模拟[J]. 地震学报,45(2):179–195. doi: 10.11939/jass.20220190
|
Zhao J X,Ba Z N,Kuo C Y,Liu B J. 2023. Broadband ground motion simulations applied to the Luding MS6.8 earthquake on September 5,2022 based on spectral element method[J]. Acta Seismologica Sinica,45(2):179–195 (in Chinese).
|
周红,高孟潭,俞言祥. 2010. SH 波地形效应特征的研究[J]. 地球物理学进展,25(3):775–782. doi: 10.3969/j.issn.1004-2903.2010.03.005
|
Zhou H,Gao M T,Yu Y X. 2010. A study of topographical effect on SH waves[J]. Progress in Geophysics,25(3):775–782 (in Chinese).
|
周红. 2018. 九寨沟7.0级地震地表地震动位移及静态位移的模拟研究[J]. 地球物理学报,61(12):4851–4861. doi: 10.6038/cjg2018M0010
|
Zhou H. 2018. Research on ground motion displacement and static displacement near the fault of Jiuzhaigou MS7.0 earthquake[J]. Chinese Journal of Geophysics,61(12):4851–4861 (in Chinese).
|
朱伯芳. 1998. 有限单元法原理与应用[M]. 第二版. 北京:水利水电出版社:1−176.
|
Zhu B F. 1998. The Finite Element Method Theory and Applications[M]. 2nd ed. Beijing:China Water&Power Press:1−176 (in Chinese).
|
Abraham J R,Smerzini C,Paolucci R,Lai C G. 2016. Numerical study on basin-edge effects in the seismic response of the Gubbio valley,Central Italy[J]. B Earthq Eng,14:1437–1459. doi: 10.1007/s10518-016-9890-y
|
Aguirre V M H,Paolucci R,Sánchez-Sesma F J,Mazzieri I. 2023. Three-dimensional numerical modeling of ground motion in the Valley of Mexico:A case study from the MW3. 2 earthquake of July 17,2019[J]. Earthq Spectra, 39 (4):2323−2351.
|
Alford R M,Kelly K R,Boore D M. 1974. Accuracy of finite-difference modeling of the acoustic wave equation[J]. Geophysics,39(6):834–842. doi: 10.1190/1.1440470
|
Antonietti P F,Mazzieri I,Quarteroni A,Rapetti F. 2012. Non-conforming high order approximations of the elastodynamics equation[J]. Comput Method Appl M,209:212–238.
|
Asmar A H. 2005. Partial Differential Equations with Fourier Series and Boundary Value Problems[M]. 2nd ed. USA:Courier Dover Publications:227−321.
|
Ba Z N,Fu J S,Wang F B,Liang J W,Zhang B,Zhang L. 2024a. Physics-based seismic analysis of ancient wood structure:fault-to-structure simulation[J]. Earthq Eng Eng Vib,23(3):727–740. doi: 10.1007/s11803-024-2268-2
|
Ba Z N,Sang Q Z,Wu M T,Liang J W. 2021. The revised direct stiffness matrix method for seismogram synthesis due to dislocations:from crustal to geotechnical scale[J]. Geophys J Int,227(1):717–734. doi: 10.1093/gji/ggab248
|
Ba Z N,Wu M T,Liang J W,Zhao J X,Lee V W. 2022. A two-step approach combining FK with SE for simulating ground motion due to point dislocation sources[J]. Soil Dyn Earthq Eng,57:107224.
|
Ba Z N,Zhao J X,Sang Q Z,Liang J W. 2024b. Nonlinear seismic response of an alluvial basin modelled by spectral element method:Implementation of a Davidenkov constitutive model[J]. J Earthq Eng,1−30.
|
Ba Z N,Zhao J X,Wang Y. 2024c. GA-BPNN prediction model of broadband ground motion parameters in Tianjin area driven by synthetic database based on hybrid simulated method[J]. Pure Appl Geophys,181:1195–1220. doi: 10.1007/s00024-024-03431-1
|
Ba Z N,Zhao J X,Zhu Z H,Zhou G Y. 2023. 3D physics-based ground motion simulation and topography effects of the 05 September 2022 MW6. 6 Luding earthquake,China[J]. Soil Dyn Earthq Eng, 172 :108048.
|
Baker J W,Luco N,Abrahamson N A,Graves R W,Maechling P J,Olsen K B. 2014. Engineering uses of physics-based ground motion simulations[C]//Proceedings of the Tenth US Conference on Earthquake Engineering,Anchorage,Alaska:1−11.
|
Bradley B A. 2019. On-going challenges in physics-based ground motion prediction and insights from the 2010–2011 Canterbury and 2016 Kaikoura,New Zealand earthquakes[J]. Soil Dyn Earthq Eng,124:354–364. doi: 10.1016/j.soildyn.2018.04.042
|
Briani M,Sommariva A,Vianello M. 2012. Computing Fekete and Lebesgue points:simplex,square,disk[J]. J Comput Appl Math,236(9):2477–2486. doi: 10.1016/j.cam.2011.12.006
|
Canuto C,Hussaini M Y,Quarteroni A,Zang T A. 1988. Spectral Methods in Fluid Dynamics[M]. Berlin:Springer-Verlag:1−550.
|
Canuto C,Hussaini M Y,Quarteroni A,Zang T A. 2006. Spectral Methods – Fundamentals in Single Domains[M]. Berlin:Springer-Verlag:1−552.
|
Capdeville Y,Gung Y,Romanowicz B. 2005. Towards global earth tomography using the spectral element method:a technique based on source stacking[J]. Geophys J Int,162(2):541–554. doi: 10.1111/j.1365-246X.2005.02689.x
|
Carmona A E,Peter D B,Parisi L,Mai P M. 2024. Anelastic tomography of the Arabian plate[J]. B Seismol Soc Am,114(3):1347–1364.
|
Castelli F,Cavallaro A,Grasso S,Lentini V. 2016. Seismic microzoning from synthetic ground motion earthquake scenarios parameters:the case study of the City of Catania (Italy)[J]. Soil Dyn Earthq Eng,88:307–327. doi: 10.1016/j.soildyn.2016.07.010
|
Chaljub E,Komatitsch D,Vilotte J P,Capdeville Y,Valette B,Festa G. 2007. Spectral-element analysis in seismology[J]. Adv Geophys,48:365–419.
|
Chaljub E,Maufroy E,Moczo P,Kristek J,Hollender F,Bard P Y,Priolo E,Klin P,Martin F,Zhang Z G,Zhang W,Chen X F. 2015. 3-D numerical simulations of earthquake ground motion in sedimentary basins:testing accuracy through stringent models[J]. Geophys J Int,201(1):90–111. doi: 10.1093/gji/ggu472
|
Chaljub E,Moczo P,Tsuno S,Bard P Y,Kristek J,Käser M,Stupazzini M,Kristekova M. 2010. Quantitative comparison of four numerical predictions of 3D ground motion in the Grenoble Valley,France[J]. B Seismol Soc Am,100(4):1427–1455. doi: 10.1785/0120090052
|
Che C X,Wang X M,Lin W J. 2010. The Chebyshev spectral element method using staggered predictor and corrector for elastic wave simulations[J]. Appl Geophys,7(2):174–184. doi: 10.1007/s11770-010-0242-9
|
Chen M,Niu F L,Liu Q Y,Tromp J,Zheng X F. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia:1. Model construction and comparisons[J]. J Geophys Res-Sol Ea,120(3):1762–1786. doi: 10.1002/2014JB011638
|
Chen M,Niu F L,Tromp J,Lenardic A,Lee C T A,Cao W R,Ribeiro J. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nat Commun,8(1):15659. doi: 10.1038/ncomms15659
|
Chen Q,Babuška I. 1995. Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle[J]. Comput Method Appl M, 128 (3−4):405−417.
|
Chen Z W,Huang D R,Wang G. 2023a. Large‐scale ground motion simulation of the 2016 Kumamoto earthquake incorporating soil nonlinearity and topographic effects[J]. Earthq Eng Struct D,52(4):956–978. doi: 10.1002/eqe.3795
|
Chen Z W,Huang D R,Wang G. 2023b. A regional scale coseismic landslide analysis framework:Integrating physics-based simulation with flexible sliding analysis[J]. Eng Geol,315:107040. doi: 10.1016/j.enggeo.2023.107040
|
Cohen G C. 2002. Higher-Order Numerical Methods for Transient Wave Equations[M]. Berlin:Springer:1−346.
|
Cohen G,Joly P,Roberts J E,Tordjman N. 2001. Higher order triangular finite elements with mass lumping for the wave equation[J]. SIAM J Numer Anal,38(6):2047–2078. doi: 10.1137/S0036142997329554
|
Cui Y,Poyraz E,Olsen K B,Zhu J,Withers K,Callaghan S,Larkin J,Guest C,Choi D,Chourasia A,Shi Z,Day S M,Maechling P J,Jordan T H. 2013. Physics-based seismic hazard analysis on petascale heterogeneous supercomputers[C]//Proceedings of the International Conference on High Performance Computing,Networking,Storage and Analysis:1−12.
|
Dauksher W,Emery A F. 1997. Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements[J]. Finite Elem Anal Des,26(2):115–128. doi: 10.1016/S0168-874X(96)00075-3
|
De Basabe J D,Sen M K,Wheeler M F. 2008. The interior penalty discontinuous Galerkin method for elastic wave propagation:Grid dispersion[J]. Geophys J Int,175(1):83–93. doi: 10.1111/j.1365-246X.2008.03915.x
|
De Basabe J D,Sen M K. 2007. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations[J]. Geophysics,72(6):T81–T95. doi: 10.1190/1.2785046
|
De Basabe J D,Sen M K. 2009. New developments in the finite-element method for seismic modeling[J]. The Leading Edge,28(5):562–567. doi: 10.1190/1.3124931
|
De Basabe J D,Sen M K. 2010. Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping[J]. Geophys J Int,181(1):577–590. doi: 10.1111/j.1365-246X.2010.04536.x
|
De Basabe J D,Sen M K. 2015. A comparison of finite-difference and spectral-element methods for elastic wave propagation in media with a fluid-solid interface[J]. Geophys J Int,200(1):278–298. doi: 10.1093/gji/ggu389
|
De Basabe J D. 2009. High-Order Finite Element Methods for Seismic Wave Propagation[D]. Austin:The University of Texas at Austin:1−128.
|
Dubiner M. 1991. Spectral methods on triangles and other domains[J]. J Sci Comput,6:345–390. doi: 10.1007/BF01060030
|
Dumbser M,Käser M,Toro E F. 2007. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes-V. Local time stepping and p-adaptivity[J]. Geophys J Int,171(2):695–717. doi: 10.1111/j.1365-246X.2007.03427.x
|
Dumbser M,Käser M. 2006. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—II. The three-dimensional isotropic case[J]. Geophys J Int,167(1):319–336. doi: 10.1111/j.1365-246X.2006.03120.x
|
Evangelista L,Del Gaudio S,Smerzini C,d’Onofrio A,Festa G,Iervolino I,Landolfi L,Paolucci R,Santo A,Silvestri F. 2017. Physics-based seismic input for engineering applications:a case study in the Aterno river valley,Central Italy[J]. B Earthq Eng,15:2645–2671. doi: 10.1007/s10518-017-0089-7
|
Faccioli E,Maggio F,Paolucci R,Quarteroni A. 1997. 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method[J]. J Seismol,1:237–251. doi: 10.1023/A:1009758820546
|
Faccioli E,Quarteroni A. 1999. Comment on “The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures,” by D. Komatitsch and J. -P. Vilotte[J]. B Seismol Soc Am, 89 (1):331−331.
|
Feng K W,Huang D R,Wang G,Jin F,Chen Z W. 2022. Physics-based large-deformation analysis of coseismic landslides:A multiscale 3D SEM-MPM framework with application to the Hongshiyan landslide[J]. Eng Geol,297:106487. doi: 10.1016/j.enggeo.2021.106487
|
Fichtner A,Simutė S. 2018. Hamiltonian Monte Carlo inversion of seismic sources in complex media[J]. J Geophys Res-Sol Ea,123(4):2984–2999. doi: 10.1002/2017JB015249
|
French S W,Romanowicz B A. 2014. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography[J]. Geophys J Int,199(3):1303–1327. doi: 10.1093/gji/ggu334
|
Fu J S,Ba Z N,Wang F B. 2024. A simulation approach for site-city interaction in basin under oblique incident waves and its applications[J]. Soil Dyn Earthq Eng,177:108407. doi: 10.1016/j.soildyn.2023.108407
|
Gatti F,Touhami S,Lopez-Caballero F,Paolucci R,Clouteau D,Fernandes V A,Kham M,Voldoire F. 2018. Broad-band 3-D earthquake simulation at nuclear site by an all-embracing source-to-structure approach[J]. Soil Dyn Earthq Eng,115:263–280. doi: 10.1016/j.soildyn.2018.08.028
|
Geng Y H,Qin G L,Wang Y,He W. 2016. The research of space-time coupled spectral element method for acoustic wave equations[J]. Chinese Journal of Acoustics,35(1):29–47.
|
Giraldo F X,Taylor M A. 2006. A diagonal-mass-matrix triangular-spectral-element method based on cubature points[J]. J Eng Math,56:307–322.
|
Gopalakrishnan S,Chakraborty A,Mahapatra D R. 2008. Spectral Finite Element Method:Wave Propagation,Diagnostics and Control in Anisotropic and Inhomogeneous Structures[M]. London:Springer-Verlag:1−22.
|
Gottlieb D,Orszag S A. 1977. Numerical Analysis of Spectral Methods:Theory and Applications[M]. Philadelphia:Society for Industrial and Applied Mathematics:1−167.
|
Grasso S,Maugeri M. 2014. Seismic microzonation studies for the city of Ragusa (Italy)[J]. Soil Dyn Earthq Eng,56:86–97. doi: 10.1016/j.soildyn.2013.10.004
|
Graves R,Jordan T H,Callaghan S,Deelman E,Field E,Juve G,Kesselman C,Maechling P,Mehta G,Milner K,Okaya D,Small P,Vahi K. 2011. CyberShake:A physics-based seismic hazard model for southern California[J]. Pure Appl Geophys,168:367–381. doi: 10.1007/s00024-010-0161-6
|
Graves R,Pitarka A. 2015. Refinements to the Graves and Pitarka (2010) broadband ground‐motion simulation method[J]. Seismol Res Lett,86(1):75–80. doi: 10.1785/0220140101
|
Han L,Wang J X,Li H J,Sun G J. 2020. A time-domain spectral element method with C1 continuity for static and dynamic analysis of frame structures[J]. Structures,28:604–613. doi: 10.1016/j.istruc.2020.08.074
|
He C H,Wang J T,Zhang C H,Jin F. 2015. Simulation of broadband seismic ground motions at dam canyons by using a deterministic numerical approach[J]. Soil Dyn Earthq Eng,76:136–144. doi: 10.1016/j.soildyn.2014.12.004
|
He C H,Wang J T,Zhang C H. 2016. Nonlinear spectral‐element method for 3D seismic‐wave propagation[J]. B Seismol Soc Am,106(3):1074–1087. doi: 10.1785/0120150341
|
Hermann V,Käser M,Castro C E. 2011. Non-conforming hybrid meshes for efficient 2-D wave propagation using the discontinuous Galerkin method[J]. Geophys J Int,184(2):746–758. doi: 10.1111/j.1365-246X.2010.04858.x
|
Ho L W,Patera A T. 1990. A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows[J]. Comput Method Appl M,80:355–366. doi: 10.1016/0045-7825(90)90040-S
|
Huang D R,Wang G,Du C Y,Jin F,Feng K W,Chen Z W. 2020. An integrated SEM-Newmark model for physics-based regional coseismic landslide assessment[J]. Soil Dyn Earthq Eng,132:106066. doi: 10.1016/j.soildyn.2020.106066
|
Huang D R,Wang G,Du C Y,Jin F. 2021. Seismic amplification of soil ground with spatially varying shear wave velocity using 2D spectral element method[J]. J Earthq Eng,25(14):2834–2849. doi: 10.1080/13632469.2019.1654946
|
Infantino M,Mazzieri I,Özcebe A G,Paolucci R,Stupazzini M. 2020. 3D physics‐based numerical simulations of ground motion in Istanbul from earthquakes along the Marmara segment of the north Anatolian fault[J]. B Seismol Soc Am,110(5):2559–2576. doi: 10.1785/0120190235
|
Infantino M,Smerzini C,Lin J. 2021. Spatial correlation of broadband ground motions from physics‐based numerical simulations[J]. Earthq Eng Struct D,50(10):2575–2594. doi: 10.1002/eqe.3461
|
Karaoğlu H,Romanowicz B. 2018. Inferring global upper-mantle shear attenuation structure by waveform tomography using the spectral element method[J]. Geophys J Int,213(3):1536–1558. doi: 10.1093/gji/ggy030
|
Karniadakis G,Sherwin S J. 2005. Spectral/hp Element Methods for Computational Fluid Dynamics[M]. New York:Oxford University Press:1−652.
|
Käser M,Dumbser M,Puente J,Igel H. 2007. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—III. Viscoelastic attenuation[J]. Geophys J Int,168(1):224–242. doi: 10.1111/j.1365-246X.2006.03193.x
|
Käser M,Dumbser M. 2006. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—I. The two-dimensional isotropic case with external source terms[J]. Geophys J Int,166(2):855–877. doi: 10.1111/j.1365-246X.2006.03051.x
|
Käser M,Dumbser M. 2008. A highly accurate discontinuous Galerkin method for complex interfaces between solids and moving fluids[J]. Geophysics,73(3):T23–T35. doi: 10.1190/1.2870081
|
Käser M,Hermann V,Puente J. 2008. Quantitative accuracy analysis of the discontinuous Galerkin method for seismic wave propagation[J]. Geophys J Int,173(3):990–999. doi: 10.1111/j.1365-246X.2008.03781.x
|
Kato B,Wang G. 2021. Regional seismic responses of shallow basins incorporating site‐city interaction analyses on high‐rise building clusters[J]. Earthq Eng Struct D,50(1):214–236. doi: 10.1002/eqe.3363
|
Kato B,Wang G. 2022. Seismic site–city interaction analysis of super-tall buildings surrounding an underground station:A case study in Hong Kong[J]. B Earthq Eng,20(3):1431–1454. doi: 10.1007/s10518-021-01295-7
|
Komatitsch D,Barnes C,Tromp J. 2000a. Wave propagation near a fluid-solid interface:A spectral-element approach[J]. Geophysics,65(2):623–631. doi: 10.1190/1.1444758
|
Komatitsch D,Barnes C,Tromp J. 2000b. Simulation of anisotropic wave propagation based upon a spectral element method[J]. Geophysics,65(4):1251–1260. doi: 10.1190/1.1444816
|
Komatitsch D,Erlebacher G,Göddeke D,Michéa D. 2010. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster[J]. J Comput Phys,229(20):7692–7714.
|
Komatitsch D,Liu Q,Tromp J,Süss P,Stidham C,Shaw J H. 2004. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method[J]. B Seismol Soc Am,94(1):187–206.
|
Komatitsch D,Martin R,Tromp J,Taylor M A,Wingate B A. 2001. Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles[J]. J Comput Acoust,9(2):703–718.
|
Komatitsch D,Martin R. 2007. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation[J]. Geophysics,72(5):SM155–SM167. doi: 10.1190/1.2757586
|
Komatitsch D,Ritsema J,Tromp J. 2002. The spectral-element method,Beowulf computing,and global seismology[J]. Science,298(5599):1737–1742. doi: 10.1126/science.1076024
|
Komatitsch D,Tromp J. 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophys J Int,139(3):806–822. doi: 10.1046/j.1365-246x.1999.00967.x
|
Komatitsch D,Tromp J. 2002a. Spectral-element simulations of global seismic wave propagation—I. Validation[J]. Geophys J Int,149(2):390–412. doi: 10.1046/j.1365-246X.2002.01653.x
|
Komatitsch D,Tromp J. 2002b. Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models,oceans,rotation and self-gravitation[J]. Geophys J Int,150(1):303–318. doi: 10.1046/j.1365-246X.2002.01716.x
|
Komatitsch D,Tromp J. 2003. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation[J]. Geophys J Int,154(1):146–153. doi: 10.1046/j.1365-246X.2003.01950.x
|
Komatitsch D,Vilotte J P,Vai R,Castillo-Covarrubias J M,Sánchez-Sesma F J. 1999. The spectral element method for elastic wave equations — Application to 2‐D and 3‐D seismic problems[J]. Int J Numer Meth Eng,45(9):1139–1164. doi: 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T
|
Komatitsch D,Vilotte J P. 1998. The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. B Seismol Soc Am,88(2):368–392. doi: 10.1785/BSSA0880020368
|
Komatitsch D,Vilotte J P. 1999. Reply to comment by E. Faccioli and A. Quarteroni on “The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures,” by D. Komatitsch and J. -P. Vilotte[J]. B Seismol Soc Am, 89 (1):332−334.
|
Krishnan S,Ji C,Komatitsch D,Tromp J. 2006. Performance of two 18-story steel moment-frame buildings in southern California during two large simulated San Andreas earthquakes[J]. Earthq Spectra,22(4):1035–1061. doi: 10.1193/1.2360698
|
Laurenzano G,Priolo E,Tondi E. 2008. 2D numerical simulations of earthquake ground motion:examples from the Marche Region,Italy[J]. J Seismol,12:395–412. doi: 10.1007/s10950-008-9095-1
|
Laurenzano G,Priolo E. 2005. Numerical modeling of the 13 December 1990 M 5.8 east Sicily earthquake at the Catania accelerometric station[J]. B Seismol Soc Am,95(1):241–251. doi: 10.1785/0120030126
|
Lee S J,Chen H W,Liu Q,Komatitsch D,Huang B S,Tromp J. 2008. Three-dimensional simulations of seismic-wave propagation in the Taipei basin with realistic topography based upon the spectral-element method[J]. B Seismol Soc Am,98(1):253–264. doi: 10.1785/0120070033
|
Lee S J,Komatitsch D,Huang B S,Tromp J. 2009. Effects of topography on seismic-wave propagation:An example from northern Taiwan[J]. B Seismol Soc Am,99(1):314–325. doi: 10.1785/0120080020
|
Lee U. 2009. Spectral Element Method in Structural Dynamics[M]. Singapore:John Wiley & Sons (Asia) Pte Ltd:1−448.
|
Liang J W,Wu M T,Ba Z N,Liu Y. 2021. A hybrid method for modeling broadband seismic wave propagation in 3D localized regions to incident P,SV,and SH waves[J]. Int J Appl Mech,13(10):2150119. doi: 10.1142/S1758825121501192
|
Liu Q F,Yu Y Y,Yin D Y,Zhang X B. 2018. Simulations of strong motion in the Weihe basin during the Wenchuan earthquake by spectral element method[J]. Geophys J Int,215(2):978–995. doi: 10.1093/gji/ggy320
|
Liu Q F,Yu Y Y,Zhang X B. 2015. Three-dimensional simulations of strong ground motion in the Shidian basin based upon the spectral-element method[J]. Earthq Eng Eng Vib,14(3):385–398. doi: 10.1007/s11803-015-0031-4
|
Liu Q Y,Gu Y J. 2012. Seismic imaging:From classical to adjoint tomography[J]. Tectonophysics,566:31–66.
|
Liu Q Y,Polet J,Komatitsch D,Tromp J. 2004. Spectral-element moment tensor inversions for earthquakes in southern California[J]. B Seismol Soc Am,94(5):1748–1761. doi: 10.1785/012004038
|
Liu Q Y,Tromp J. 2006. Finite-frequency kernels based on adjoint methods[J]. B Seismol Soc Am,96(6):2383–2397. doi: 10.1785/0120060041
|
Liu Q Y,Tromp J. 2008. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods[J]. Geophys J Int,174(1):265–286. doi: 10.1111/j.1365-246X.2008.03798.x
|
Liu S L,Yang D H,Dong X P,Liu Q C,Zheng Y C. 2017. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling[J]. Solid Earth,8(5):969–986. doi: 10.5194/se-8-969-2017
|
Liu T,Sen M K,Hu T Y,De Basabe J D,Li L. 2012. Dispersion analysis of the spectral element method using a triangular mesh[J]. Wave Motion,49:474–483. doi: 10.1016/j.wavemoti.2012.01.003
|
Liu Y S,Teng J W,Lan H Q,Si X,Ma X Y. 2014. A comparative study of finite element and spectral element methods in seismic wavefield modeling[J]. Geophysics,79(2):T91–T104. doi: 10.1190/geo2013-0018.1
|
Liu Y S,Teng J W,Xu T,Badal J. 2017. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling[J]. J Comput Phys,336:458–480. doi: 10.1016/j.jcp.2017.01.069
|
Lloyd A J,Wiens D A,Zhu H,Tromop J,Nyblade A A,Aster R C,Hansen S E,Dalziel I W D,Wilson T J,Ivins E R,O’Donnell J P. 2020. Seismic structure of the Antarctic upper mantle imaged with adjoint tomography[J]. J Geophys Res-Sol Ea, 125 (3).
|
Lu X Z,Tian Y,Wang G,Huang D R. 2018. A numerical coupling scheme for nonlinear time history analysis of buildings on a regional scale considering site‐city interaction effects[J]. Earthq Eng Struct D,47(13):2708–2725. doi: 10.1002/eqe.3108
|
Ma H. 1993. A spectral element basin model for the shallow water equations[J]. J Comput Phys,109:133–149. doi: 10.1006/jcph.1993.1205
|
Magnoni F,Casarotti E,Komatitsch D,Stefano R D,Ciaccio M G,Tape C,Melini D,Michelini A,Piersanti A,Tromp J. 2022. Adjoint tomography of the Italian lithosphere[J]. Commun Earth Environ,3(1):69. doi: 10.1038/s43247-022-00397-7
|
Marfurt K J. 1984. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[J]. Geophysics,49(5):533–549. doi: 10.1190/1.1441689
|
Martin R,Komatitsch D,Gedney S D,Bruthiaux E. 2010. A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML)[J]. CMES-Comp Model Eng,56(1):17–40.
|
Martin R,Komatitsch D,Gedney S D. 2008. A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation[J]. CMES-Comp Model Eng,37(3):274–304.
|
Mazzieri I,Stupazzini M,Guidotti R,Smerzini C. 2013. SPEED:SPectral Elements in Elastodynamics with Discontinuous Galerkin:A non‐conforming approach for 3D multi‐scale problems[J]. Int J Numer Meth Eng,95(12):991–1010. doi: 10.1002/nme.4532
|
Michéa D,Komatitsch D. 2010. Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards[J]. Geophys J Int,182(1):389–402.
|
Moczo P,Kristek J,Halada L. 2000. 3D fourth-order staggered-grid finite-difference schemes:Stability and grid dispersion[J]. B Seismol Soc Am,90(3):587–603. doi: 10.1785/0119990119
|
Morency C,Tromp J. 2008. Spectral-element simulations of wave propagation in porous media[J]. Geophys J Int,175(1):301–345. doi: 10.1111/j.1365-246X.2008.03907.x
|
Mulder W A,Zhebel E,Minisini S. 2014. Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave propagation[J]. Geophys J Int,196(2):1123–1133. doi: 10.1093/gji/ggt446
|
Mulder W A. 1999. Spurious modes in finite-element discretizations of the wave equation may not be all that bad[J]. Appl Numer Math,30(4):425–445. doi: 10.1016/S0168-9274(98)00078-6
|
Mulder W A. 2001. Higher-order mass-lumped finite elements for the wave equation[J]. J Comput Acoust,9(2):671–680. doi: 10.1142/S0218396X0100067X
|
Mulder W A. 2013. New triangular mass-lumped finite elements of degree six for wave propagation[J]. Prog Electromagn Res,141:671–692. doi: 10.2528/PIER13051308
|
Mullen R,Belytschko T. 1982. Dispersion analysis of finite element semidiscretizations of the two‐dimensional wave equation[J]. Int J Numer Meth Eng,18(1):11–29. doi: 10.1002/nme.1620180103
|
Oliveira S P,Seriani G. 2011. Effect of element distortion on the numerical dispersion of spectral element methods[J]. Commun Comput Phys,9(4):937–958. doi: 10.4208/cicp.071109.080710a
|
Ostachowicz W,Kudela P,Krawczuk M,Zak A. 2012. Guided Waves in Structures for SHM:The Time-Domain Spectral Element Method[M]. London:John Wiley & Sons:1−334.
|
Padovani E,Priolo E,Seriani G. 1994. Low and high order finite element method:experience in seismic modeling[J]. J Comput Acoust,2(4):371–422. doi: 10.1142/S0218396X94000233
|
Paolucci R,Evangelista L,Mazzieri I,Schiappapietra E. 2016. The 3D numerical simulation of near-source ground motion during the Marsica earthquake,central Italy,100 years later[J]. Soil Dyn Earthq Eng,91:39–52. doi: 10.1016/j.soildyn.2016.09.023
|
Paolucci R,Gatti F,Infantino M,Smerzini C,Özcebe A G,Stupazzini M. 2018. Broadband ground motions from 3D physics‐based numerical simulations using artificial neural networks[J]. B Seismol Soc Am,108(3A):1272–1286. doi: 10.1785/0120170293
|
Paolucci R,Mazzieri I,Smerzini C. 2015. Anatomy of strong ground motion:near-source records and three-dimensional physics-based numerical simulations of the MW6.0 2012 May 29 Po Plain earthquake,Italy[J]. Geophys J Int,203(3):2001–2020. doi: 10.1093/gji/ggv405
|
Paolucci R,Smerzini C,Vanini M. 2021. BB‐SPEEDset:A validated dataset of broadband near‐source earthquake ground motions from 3D physics‐based numerical simulations[J]. B Seismol Soc Am,111(5):2527–2545. doi: 10.1785/0120210089
|
Pasquetti R,Rapetti F. 2004. Spectral element methods on triangles and quadrilaterals:comparisons and applications[J]. J Comput Phys,198(1):349–362. doi: 10.1016/j.jcp.2004.01.010
|
Patera A T. 1984. A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J]. J Comput Phys,54:468–488. doi: 10.1016/0021-9991(84)90128-1
|
Pelties C,Käser M,Hermann V,Castro C E. 2010. Regular versus irregular meshing for complicated models and their effect on synthetic seismograms[J]. Geophys J Int,183(2):1031–1051. doi: 10.1111/j.1365-246X.2010.04777.x
|
Pelties C,Puente J,Ampuero J P,Brietzke G B,Käser M. 2012. Three‐dimensional dynamic rupture simulation with a high‐order discontinuous Galerkin method on unstructured tetrahedral meshes[J]. J Geophys Res-Sol Ea,117:B02309.
|
Pilz M,Parolai S,Stupazzini M,Paolucci R,Zschau J. 2011. Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code[J]. Geophys J Int,187(2):929–945. doi: 10.1111/j.1365-246X.2011.05183.x
|
Pozrikidis C. 2014. Introduction to Finite and Spectral Element Methods Using MATLAB[M]. 2nd ed. USA:University of Massachusetts,CRC Press:1−793.
|
Priolo E,Carcione J M,Seriani G. 1994. Numerical simulation of interface waves by high‐order spectral modeling techniques[J]. J Acoust Soc Am,95(2):681–693. doi: 10.1121/1.408428
|
Priolo E,Seriani G. 1991. A numerical investigation of Chebyshev SEM for acoustic wave propagation[C]//Proceedings of 13th World Congress on Computation and Applied Mathematics,Ireland:Trinity College Dublin:551−556.
|
Priolo E. 1999. 2-D spectral element simulations of destructive ground shaking in Catania (Italy)[J]. J Seismol,3:289–309. doi: 10.1023/A:1009838325266
|
Priolo E. 2001. Earthquake ground motion simulation through the 2-D spectral element method[J]. J Comput Acoust,9(4):1561–1581. doi: 10.1142/S0218396X01001522
|
Puente J,Ampuero J P,Käser M. 2009. Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method[J]. J Geophys Res-Sol Ea,114:B10302.
|
Puente J,Dumbser M,Käser M,Igel H. 2008. Discontinuous Galerkin methods for wave propagation in poroelastic media[J]. Geophysics,73(5):T77–T97. doi: 10.1190/1.2965027
|
Puente J,Käser M,Dumbser M,Igel H. 2007. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-IV. Anisotropy[J]. Geophys J Int,169(3):1210–1228. doi: 10.1111/j.1365-246X.2007.03381.x
|
Rønquist E M,Patera A T. 1987. A Legendre spectral element method for the Stefan problem[J]. Int J Numer Meth Eng,24(12):2273–2299.
|
Sawade L,Beller S,Lei W,Tromp J. 2022. Global centroid moment tensor solutions in a heterogeneous earth:the CMT3D catalogue[J]. Geophys J Int,231(3):1727–1738. doi: 10.1093/gji/ggac280
|
Schuberth B. 2003. The Spectral Element Method for Seismic Wave Propagation:Theory,Implementation and Comparison to Finite Difference Methods [D]. München:Ludwig Maximilians Universität:1−163.
|
Seriani G,Oliveira S P. 2007. Optimal blended spectral-element operators for acoustic wave modeling[J]. Geophysics,72(5):SM95–SM106. doi: 10.1190/1.2750715
|
Seriani G,Oliveira S P. 2008a. Dispersion analysis of spectral element methods for elastic wave propagation[J]. Wave Motion,45(6):729–744. doi: 10.1016/j.wavemoti.2007.11.007
|
Seriani G,Oliveira S P. 2008b. DFT modal analysis of spectral element methods for acoustic wave propagation[J]. J Comput Acoust,16(4):531–561. doi: 10.1142/S0218396X08003774
|
Seriani G,Priolo E,Carcione J,Padovani E,Geofisica O. 1992. High-order spectral element method for elastic wave modeling[C]// Seg Technical Program Expanded Abstracts 1992. Society of Exploration Geophysicists:1285−1288.
|
Seriani G,Priolo E. 1991. High-order spectral element method for acoustic wave modeling[C]//Expanded Abstracts of the Society of Exploration Geophysicists,61st International Meeting of the SEG,Houston,Texas:1561−1564.
|
Seriani G,Priolo E. 1994. Spectral element method for acoustic wave simulation in heterogeneous media[J]. Finite Elem Anal Des,16:337–348. doi: 10.1016/0168-874X(94)90076-0
|
Seriani G,Su C. 2012. Wave propagation modeling in highly heterogeneous media by a poly-grid Chebyshev spectral element method[J]. J Comput Acoust,20(2):1240004. doi: 10.1142/S0218396X12400048
|
Seriani G. 1997. A parallel spectral element method for acoustic wave modeling[J]. J Comput Acoust,5(1):53–69. doi: 10.1142/S0218396X97000058
|
Seriani G. 1998. 3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor[J]. Comput Method Appl M,164:235–247. doi: 10.1016/S0045-7825(98)00057-7
|
Seriani G. 2004. Double-grid Chebyshev spectral elements for acoustic wave modeling[J]. Wave Motion,39(4):351–360. doi: 10.1016/j.wavemoti.2003.12.008
|
Sherwin S J,Karniadakis G E. 1995. A triangular spectral element method; applications to the incompressible Navier-Stokes equations[J]. Comput Method Appl M, 123 (1−4):189−229.
|
Smerzini C,Amendola C,Paolucci R,Bazrafshan A. 2024. Engineering validation of BB-SPEEDset,a data set of near-source physics-based simulated accelerograms[J]. Earthq Spectra,40(1):420–445. doi: 10.1177/87552930231206766
|
Smerzini C,Paolucci R,Stupazzini M. 2011. Comparison of 3D,2D and 1D numerical approaches to predict long period earthquake ground motion in the Gubbio plain,Central Italy[J]. B Earthq Eng,9:2007–2029. doi: 10.1007/s10518-011-9289-8
|
Smerzini C,Pitilakis K,Hashemi K. 2017. Evaluation of earthquake ground motion and site effects in the Thessaloniki urban area by 3D finite-fault numerical simulations[J]. B Earthq Eng,15:787–812. doi: 10.1007/s10518-016-9977-5
|
Smerzini C,Pitilakis K. 2018. Seismic risk assessment at urban scale from 3D physics-based numerical modeling:the case of Thessaloniki[J]. B Earthq Eng,16:2609–2631. doi: 10.1007/s10518-017-0287-3
|
Soto V,Sáez E,Magna-Verdugo C. 2020. Numerical modeling of 3D site-city effects including partially embedded buildings using spectral element methods. Application to the case of Viña del Mar city,Chile[J]. Eng Struct,223:111188. doi: 10.1016/j.engstruct.2020.111188
|
Stich D,Martín R,Morales J. 2010. Moment tensor inversion for Iberia–Maghreb earthquakes 2005–2008[J]. Tectonophysics,483:390–398. doi: 10.1016/j.tecto.2009.11.006
|
Stupazzini M,Infantino M,Allmann A,Paolucci R. 2020. Physics‐based probabilistic seismic hazard and loss assessment in large urban areas:A simplified application to Istanbul[J]. Earthq Eng Struct D,50(1):99–115.
|
Stupazzini M,Paolucci R,Igel H. 2009. Near-fault earthquake ground-motion simulation in the Grenoble valley by a high-performance spectral element code[J]. B Seismol Soc Am,99(1):286–301. doi: 10.1785/0120080274
|
Su C,Seriani G. 2023. Poly-grid spectral element modeling for wave propagation in complex elastic media[J]. J Theor Comput Acous,31(1):2350003. doi: 10.1142/S2591728523500032
|
Sun P G,Huang D R. 2023. Regional-scale assessment of earthquake-induced slope displacement considering uncertainties in subsurface soils and hydrogeological condition[J]. Soil Dyn Earthq Eng,164:107593. doi: 10.1016/j.soildyn.2022.107593
|
Tape C,Liu Q,Maggi A,Tromp J. 2009. Adjoint tomography of the southern California crust[J]. Science,325(5943):988–992. doi: 10.1126/science.1175298
|
Tape C,Liu Q,Maggi A,Tromp J. 2010. Seismic tomography of the southern California crust based on spectral-element and adjoint methods[J]. Geophys J Int,180(1):433–462. doi: 10.1111/j.1365-246X.2009.04429.x
|
Tape C,Liu Q,Tromp J. 2007. Finite‐frequency tomography using adjoint methods — Methodology and examples using membrane surface waves[J]. Geophys J Int,168(3):1105–1129. doi: 10.1111/j.1365-246X.2006.03191.x
|
Taylor M A,Wingate B A,Vincent R E. 2000. An algorithm for computing Fekete points in the triangle[J]. SIAM J Numer Anal,38(5):1707–1720. doi: 10.1137/S0036142998337247
|
Tian Y,Chen S Y,Liu S M,Lu X Z. 2023. Influence of tall buildings on city-scale seismic response analysis:A case study of Shanghai CBD[J]. Soil Dyn Earthq Eng,173:108063. doi: 10.1016/j.soildyn.2023.108063
|
Tian Y,Lu X Z,Huang D R,Wang T. 2022. SCI effects under complex terrains:Shaking table tests and numerical simulation[J]. J Earthq Eng,27(5):1237–1260.
|
Tian Y,Sun C J,Lu X Z,Huang Y L. 2020. Quantitative analysis of site-city interaction effects on regional seismic damage of buildings[J]. J Earthq Eng,26(8):4365–4385.
|
Trefethen L N. 2000. Spectral Methods in MATLAB[M]. Philadelphia:Society for Industrial and Applied Mathematics:1−160.
|
Tromp J,Komatitsch D,Liu Q. 2008. Spectral-element and adjoint methods in seismology[J]. Commun Comput Phys,3(1):1–32.
|
Tromp J,Tape C,Liu Q. 2005. Seismic tomography,adjoint methods,time reversal and banana-doughnut kernels[J]. Geophys J Int,160(1):195–216.
|
Virieux J. 1986. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method[J]. Geophysics,51(4):889–901. doi: 10.1190/1.1442147
|
Vosse van de F N,Minev P D. 1996. Spectral Element Methods :Theory and Applications[R]. EUT report. Netherlands:Eindhoven University of Technology:1−117.
|
Wang G,Du C Y,Huang D R,Jin F,Koo R C H,Kwan J S H. 2018. Parametric models for 3D topographic amplification of ground motions considering subsurface soils[J]. Soil Dyn Earthq Eng,115:41–54. doi: 10.1016/j.soildyn.2018.07.018
|
Wang J X,Li H J,Sun G J,Han L. 2022a. Free vibration analysis of rectangular thin plates with corner and inner cutouts using C1 Chebyshev spectral element method[J]. Thin Wall Struct,181:110031. doi: 10.1016/j.tws.2022.110031
|
Wang J X,Li H J,Xing H J. 2022b. A lumped mass Chebyshev spectral element method and its application to structural dynamic problems[J]. Earthq Eng Eng Vib,21(3):843–859. doi: 10.1007/s11803-022-2117-0
|
Wang X C,Wang J T,Zhang C H. 2022. A broadband kinematic source inversion method considering realistic Earth models and its application to the 1992 Landers earthquake[J]. J Geophys Res-Sol Ea,127(3):e2021JB023216. doi: 10.1029/2021JB023216
|
Wang X C,Wang J T,Zhang C H. 2023. Deterministic full-scenario analysis for maximum credible earthquake hazards[J]. Nat Commun,14(1):6600. doi: 10.1038/s41467-023-42410-3
|
Wang X C,Wang J T,Zhang L,He C H. 2021a. Broadband ground-motion simulations by coupling regional velocity structures with the geophysical information of specific sites[J]. Soil Dyn Earthq Eng,145:106695. doi: 10.1016/j.soildyn.2021.106695
|
Wang X C,Wang J T,Zhang L,Li S,Zhang C H. 2021b. A multidimension source model for generating broadband ground motions with deterministic 3D numerical simulations[J]. B Seismol Soc Am,111(2):989–1013. doi: 10.1785/0120200221
|
Wang X C,Wang J T. 2023. A physics‐based spectral matching (PBSM) method for generating fully site‐related ground motions[J]. Earthq Eng Struct D,52(9):2812–2829. doi: 10.1002/eqe.3897
|
Wu M T,Ba Z N,Liang J W. 2022. A procedure for 3D simulation of seismic wave propagation considering source‐path‐site effects:Theory,verification and application[J]. Earthq Eng Struct D,51(12):2925–2955. doi: 10.1002/eqe.3708
|
Xie Z N,Komatitsch D,Martin R,Matzen R. 2014. Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML[J]. Geophys J Int,198(3):1714–1747. doi: 10.1093/gji/ggu219
|
Xie Z N,Matzen R,Cristini P,Komatitsch D,Marin R. 2016. A perfectly matched layer for fluid-solid problems:Application to ocean-acoustics simulations with solid ocean bottoms[J]. J Acoust Soc Am,140(1):165–175. doi: 10.1121/1.4954736
|
Xie Z N,Zheng Y L,Cristini P,Zhang X B. 2023. Multi-axial unsplit frequency-shifted perfectly matched layer for displacement-based anisotropic wave simulation in infinite domain[J]. Earthq Eng Eng Vib,22(2):407–421. doi: 10.1007/s11803-023-2170-3
|
Xing H J,Li X J,Li H J,Liu A W. 2021a. Spectral-element formulation of multi-transmitting formula and its accuracy and stability in 1D and 2D seismic wave modeling[J]. Soil Dyn Earthq Eng,140:1–15.
|
Xing H J,Li X J,Li H J,Xie Z N,Chen S L,Zhou Z H. 2021b. The theory and new unified formulas of displacement-type local absorbing boundary conditions[J]. Bull Seismol Soc Am,111(2):801–824. doi: 10.1785/0120200155
|
Yu Y Y,Ding H P,Liu Q F. 2017. Three-dimensional simulations of strong ground motion in the Sichuan basin during the Wenchuan earthquake[J]. B Earthq Eng,15:4661–4679. doi: 10.1007/s10518-017-0154-2
|
Yu Y Y,Ding H P,Zhang X B. 2021. Simulations of ground motions under plane wave incidence in 2D complex site based on the spectral element method (SEM) and multi-transmitting formula (MTF):SH problem[J]. J Seismol,25:967–985. doi: 10.1007/s10950-021-09995-y
|
Yu Y Y,Ding H P,Zhang X B. 2024. Formulation and performance of multi-transmitting formula with spectral element method in 2D ground motion simulations under plane-wave incidence:SV wave problem[J]. J Earthq Eng,28(7):1837–1860. doi: 10.1080/13632469.2023.2268748
|
Zhang L,Wang J T,Xu Y J,He C H,Zhang C H. 2020. A procedure for 3D seismic simulation from rupture to structures by coupling SEM and FEM[J]. B Seismol Soc Am,110(3):1134–1148. doi: 10.1785/0120190289
|
Zhang M Z,Zhang L,Wang X C,Su W,Qiu Y X,Wang J T,Zhang C H. 2023. A framework for seismic response analysis of dams using numerical source‐to‐structure simulation[J]. Earthq Eng Struct D,52(3):593–608. doi: 10.1002/eqe.3774
|
Zhou H,Chen X F. 2010. A new technique to synthesize seismography with more flexibility:the Legendre spectral element method with overlapped elements[J]. Pure Appl Geophys,167:1365–1376. doi: 10.1007/s00024-010-0106-0
|
Zhou H,Jiang H. 2015. A new time-marching scheme that suppresses spurious oscillations in the dynamic rupture problem of the spectral element method:the weighted velocity Newmark scheme[J]. Geophys J Int,203(2):927–942. doi: 10.1093/gji/ggv341
|
Zhou H,Li J T,Chen X F. 2020. Establishment of a seismic topographic effect prediction model in the Lushan MS7.0 earthquake area[J]. Geophys J Int,221(1):273–288. doi: 10.1093/gji/ggaa003
|
Zhu C Y,Qin G L,Zhang J Z. 2011. Implicit Chebyshev spectral element method for acoustics wave equations[J]. Finite Elem Anal Des,47(2):184–194. doi: 10.1016/j.finel.2010.09.004
|
Zhu H J,Bozdağ E,Tromp J. 2015. Seismic structure of the European upper mantle based on adjoint tomography[J]. Geophys J Int,201(1):18–52. doi: 10.1093/gji/ggu492
|
Zhu H J,Komatitsch D,Tromp J. 2017. Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray[J]. Geophys J Int,211(1):349–377. doi: 10.1093/gji/ggx305
|
Zienkiewicz O C,Taylor R L,Zhu J Z. 2013. The Finite Element Method:Its Basis and Fundamentals[M]. 7th ed. UK:Butterworth-Heinemann,Elsevier:257−460.
|