Wu Jianbo, Zhang Hui, Su Hejun. 2014: Numerical simulation for migration rule of fault gas radon in different overburden. Acta Seismologica Sinica, 36(1): 118-128. DOI: 10.3969/j.issn.0253-3782.2014.01.010.
Citation: Wu Jianbo, Zhang Hui, Su Hejun. 2014: Numerical simulation for migration rule of fault gas radon in different overburden. Acta Seismologica Sinica, 36(1): 118-128. DOI: 10.3969/j.issn.0253-3782.2014.01.010.

Numerical simulation for migration rule of fault gas radon in different overburden

More Information
  • Received Date: September 25, 2012
  • Revised Date: March 03, 2013
  • Published Date: December 31, 2013
  • Measuring the concentration of the fault gas radon is an effective method to explore fault location and fault activity. Based on Abdoh and Pilkington’s two-dimensional partial differential equation and corresponding boundary conditions of radon migration, we establish three physical models of the overburden: internal fracture, fracture-fault and heterogeneous overburden. Then we solve these models and simulate radon migration in the overburden using partial differential toolbox (pdetool) and non-linear solution function (pdenonlin) on the Matlab platform. Finally, we analyze the simulation results of the three models, which explain the phenomena that the radon abnormal points on overburden surface are out of sync with the fault location. It is also interpreted the effect of thickness of overburden on the shape of the radon concentration curve, and impactions of the soil structural properties on the radon anomaly intensities and shapes.
  • 陈万春. 1996. 地震断层气监测的现状与展望[J]. 四川地震, (2): 56-60

    Chen W C. 1996. The presents and prospects about the monitoring of seismic fault product gas[J]. Earthquake Research in Sichuan, (2): 56-60 (in Chinese)
    国家地震局科技监测司. 1985. 地震地下水手册[M]. 北京: 地震出版社: 621-623

    Department of Science and Technology Monitoring, China Earthquake Administration. 1985. The Seismic Groundwater Handbook[M]. Beijing: Seismological Press: 621-623 (in Chinese)
    贾文懿, 方方, 周蓉生, 马英杰, 邱元德, 候新生, 吴允平, 祖秀兰, 王小琴. 2000. 氡及其子体运移规律与机理研究[J]. 核技术, 23 (3): 169-175

    Jia W Y, Fang F, Zhou R S, Ma Y J, Qiu Y D, Hou X S, Wu Y P, Zu X L, Wang X Q. 2000. Study on the migration rule and mechanism of radon and its daughters[J]. Nuclear Techniques, 23 (3): 169-175 (in Chinese)
    刘菁华, 王祝文, 田钢, 王晓丽. 2007. 均匀覆盖层中氡迁移的数值模拟[J]. 地球物理学报, 50 (3): 921-925

    Liu J H, Wang Z W, Tian G, Wang X L. 2007. Numerical simulation for radon migration in the homogeneous overburden[J]. Chinese J Geophys, 50 (3): 921-925 (in Chinese)
    汪成民, 李宣瑚, 魏柏林. 1991. 断层气测量在地震科学中的应用[M]. 北京: 地震出版社: 58-60, 84-86
    吴华平, 郭良田, 常郁, 陈少坚. 2009. 氡断层气测量在佛山西淋岗活断层探测中的应用研究[J]. 华南地震, 29 (4): 108-113

    Wu H P, Guo L T, Chang Y, Chen S J. 2009. An experimental study on active fault radon gases measurement in Foshan Xilingang fault[J]. South China Journal of Seismology, 29 (4): 108-113 (in Chinese)
    吴慧山, 林玉飞, 白云生, 常桂兰. 1995. 氡测量方法与应用[M]. 北京: 原子能出版社: 142-143

    Wu H S, Lin Y F, Bai Y S, Chang G L. 1995. Methods and Applications of Radon Measurement[M]. Beijing: Atomic Energy Press: 142-143 (in Chinese)
    张慧, 张新基, 苏鹤军, 刘旭宙. 2005. 金城关活动断裂带土壤气氡、 汞地球化学特征[J]. 西北地震学报, 27 (2): 150-153

    Zhang H, Zhang X J, Su H J, Liu X Z. 2005. The geochemical features of radon and mercury on Lanzhou Jinchengguan active fault[J]. Northwestern Seismological Journal, 27 (2): 150-153 (in Chinese)
    张慧, 张新基, 苏鹤军, 刘旭宙. 2010. 兰州市活动断层土壤气汞、 氡地球化学特征场地试验[J]. 西北地震学报, 32 (3): 273-278

    Zhang H, Zhang X J, Su H J, Liu X Z. 2010. Field test on the geochemical features of radon and mercury from soil gas on the active faults in Lanzhou[J]. Northwestern Seismological Journal, 32 (3): 273-278 (in Chinese)
    张新基, 张慧, 苏鹤军, 刘旭宙. 2005. 刘家堡活动断层土壤气氡汞地球化学特征[J]. 地震, 25 (4): 87-92.

    Zhang X J, Zhang H, Su H J, Liu X Z. 2005. Geochemical feature of radon and mercury across Liujiapu active fault[J]. Earthquake, 25 (4): 87-92 (in Chinese)
    Султанходжаев А Н, Тыминский В Г, Спиридонов А И(著). 1979. 蔡祖煌, 石慧馨(译). 1983. 放射性气体在研究地质过程中的应用[M]. 北京: 地震出版社: 1-3

    Султанходжаев А Н, Тыминский В Г, Спиридонов А И. 1979. The Application of Radioactive Gas in the Study of Geological Process[M]. Beijing: Seismological Press: 1-3 (in Chinese)
    Abdoh A, Pilkington M. 1989. Radon emanation studies of the Ile Bizard fault, Montreal[J]. Geoexploration, 25 (4): 341-354
    Fleischer R L, Hart H R, Mogro-Campero A.1980. Radon emanation over an ore body: Search for long-distance transport of radon[J]. Nuclear Instruments and Methods, 173 (1): 169-181
    Flügge S, Zimens K E. 1939. Die bestimmung von korngröβen und von diffusionskonstanten aus dem emaniervermögen (Die theorie der emardermethode)[J]. Z Phys Chem B, 42 : 179-220
    Ioannides K, Papachristodoulou C, Stamoulis K, Karamanis D, Pavlides S, Chatzipetros A, Karakala E. 2003. Soil gas radon: A tool for exploring active fault zones[J]. Appl Radiat Isot, 59 (2/3): 205-213
    Iskandar D, Iida T, Yamazawa H, Moriizumi J, Koarashi J, Yamasoto K, Yamasaki K, Shimo M, Tsujimoto T, Ishikawa S, Fukuda M, Kojima H. 2005. The transport mechanisms of 222Rn in soil at Tateishias as an anomaly spot in Japan[J]. Appl Radiat Isot, 63 (2): 401-408
    Kohl T, Medici F, Rybach L. 1994. Numerical simulation of radon transport from subsurface to buildings[J]. J Appl Geophys, 31 (1/2/3/4): 145-152
    Malmquist L, Isaksson M, Kristiansson K. 1989. Radon migration through soil and bedrock[J]. Geoexploration, 26 (2): 135-144
    Morin J P, Seidel J L, Monnin M. 1993. A tri-dimensional model for radon transport in a porous medium[J]. Nucl Tracks Radiat, 22 (1/2/3/4): 415-418
    Semkow T M, Parekh P P. 1990. The role of radium distribution and porosity in radon emanation from solids[J]. Geophy Res Lett, 17 (6): 837-840
    Swakon J, Kozak K, Paszkowski M, Gradzin′ ski R, Loskiewicz J, Mazur J, Janik M, Bogacz J, Horwacik T, Olko P. 2004. Radon concentration in soil gas around local disjunctive tectonic zones in the Krakow area [J]. J Environ Radioactiv, 78 (2): 137-149
    Voltattorni N, Lombardi S. 2010. Soil gas geochemistry: Significance and application in geological prospectings[J]. Natural Gas, 9 : 183-205
    Walia V, Yang T F, Hong W L, Li S J, Fu C C, Wen K L, Chen C H. 2009. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan[J]. Appl Radiat Isot, 67 (10): 1855-1863
  • Cited by

    Periodical cited type(17)

    1. 万悦,苏鹤军,李晨桦,周慧玲. 祁连山断裂带中东段断层土壤气氡浓度强度时空分布特征及其地震危险性分析. 地震工程学报. 2023(02): 491-500 .
    2. 张桂锋,赵勇,黄小妹. 室内氡干预措施回顾. 云南化工. 2022(06): 7-8+19 .
    3. 毕杨杨,王运生,冯倩倩,刘江伟,罗越,金刚,苏毅. 断层气氡测量技术对石棉断裂的初步探测研究. 地震工程学报. 2022(04): 980-989 .
    4. 单友磊,朱红,王家杰,张荣杉. 江苏宿迁断层气站网建设及数据质量分析. 高原地震. 2022(04): 41-47 .
    5. 戴波,赵启光,张敏,张扬,周晓成. 郯庐断裂带宿迁段合欢路土壤氡分布特征与迁移特征的数值模拟. 震灾防御技术. 2021(01): 220-228 .
    6. 丁保艳,梁雨东,童品贤,李永恒,任康辉,胡沛青. 活性炭测氡法在张掖——民乐盆地隐伏断层测量中实验条件研究. 甘肃地质. 2021(04): 75-79 .
    7. 吴慧,邹树梁. 基于CFD的铀尾矿库分层覆土中氡的运移规律研究. 环境与发展. 2020(03): 131-134 .
    8. 戴波,赵启光,张敏,张扬,冯武. 土壤氡对郯庐断裂宿迁段F_5断裂探测和活动性的研究. 地震工程学报. 2020(06): 1479-1486 .
    9. 苏鹤军,王宗礼,曹玲玲,张慧,李晨桦,周慧玲. 断裂带土壤气测量方法在断层活动性研究中的应用——以嘉峪关断层为例. 中国地质. 2020(06): 1894-1903 .
    10. 缪阿丽,张扬,方震,李锋,王维,高力. 郯庐断裂带新沂——泗洪段土壤气Rn体积活度和CO_2浓度特征研究. 地震. 2019(01): 48-57 .
    11. 王俊峰,安帮,周斌. 浅埋薄基岩自燃煤层火源位置探测数值计算及应用. 煤矿安全. 2018(06): 179-183 .
    12. 尚晓光. 氡运移在煤矿采空区探测中的应用. 能源技术与管理. 2018(05): 177-178 .
    13. 史杨,官致君,杨耀. 断层土壤气氡的应用综述. 四川地震. 2017(02): 38-44 .
    14. 文虎,张铎,张辛亥,王辉. 氡在侏罗纪煤中运移规律的实验研究. 西安科技大学学报. 2017(04): 479-484 .
    15. 任峰,邵永新,姚新强,张文朋. 断层气方法对日喀则地区活断层探测及活动性初步判定. 地震工程学报. 2017(S1): 35-42 .
    16. 喻劲松,荆磊,王乔林,韩伟,刘华忠,郜晓亮. 特殊地质地貌区填图物化探技术应用. 地质力学学报. 2016(04): 893-906 .
    17. 戴剑勇,邹树梁,汪敏. 放射性污染物多智能体系统免疫克隆选择优化. 南华大学学报(社会科学版). 2016(03): 10-14 .

    Other cited types(8)

Catalog

    Article views (583) PDF downloads (28) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return