WANG SHIREN, LI RUJHAO. 1991: DISTRIBUTION OF LATERAL DENSITY ANOMALIES IN THE LOWER MANTLE OBTAINED THROUGH LOW ORDER GEOPOTENTIAL COEFFICIENTS. Acta Seismologica Sinica, 13(1): 53-65.
Citation: WANG SHIREN, LI RUJHAO. 1991: DISTRIBUTION OF LATERAL DENSITY ANOMALIES IN THE LOWER MANTLE OBTAINED THROUGH LOW ORDER GEOPOTENTIAL COEFFICIENTS. Acta Seismologica Sinica, 13(1): 53-65.

DISTRIBUTION OF LATERAL DENSITY ANOMALIES IN THE LOWER MANTLE OBTAINED THROUGH LOW ORDER GEOPOTENTIAL COEFFICIENTS

More Information
  • Published Date: September 01, 2011
  • In this paper, we attempt to use satellite gravity data and a new inversion method to study the lateral density anomalies distribution in the mantle.First, the density difference p(r, , (?)) is expanded in terms of a three-dimensional orthogonal function system, the coefficients of the expansion are to be determined. From the relationship between density anomalies and disturbing geopotential, then, a set of observation equations is established, in which the unknown vector contains the coefficients of density anomaly expansion, and the observational vector is obtained by computing geopotential perturbations using the potential coefficients of GEM10B. By suitably selecting the harmonic orders of geopotential, a filtering process is conducted for the observational values. Finally, the lateral density variations in the lower mantle (670 km to the core-mentle boundary) are investigated. In this case, the orders of disturbing geopotential are selected as l = 2-11, the truncated orders of density anomaly expansion are taken as L = 6 and K - 4, and the damping least squares method is used to solve the observation equations.The resulting model shows the high level of density perturbations at the 670 km discontinuity and core-mantle boundary, a high-density zone circumscribing the Pacific and a lower-density region under the center of the Pacific. These features are in agreement with the features of three-dimensional seismic velocity variation obtained by Dziewonski (1984). In the Antarctic region and some parts of the Atlantic and Indian Oceans, however, the resulting density anomalies are negatively correlated with the seismic velocity anomalies. The cause resulting in these phenomena is preliminarily analysed in this paper.
  • [1] Dzicwonski, A. M., 1984. Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. J. Grapl:ys. Rrs. 80. 87, 5929——5952.

    [2] Woodhousc, J. H.&Dziewonski, A. M., 1984, Mapping the upper mantle:Three——dimensional modeling of earth structure by inversion of seismic wavefurttts. J. Craphys. Rr. 89, 87, 5953——59$6.

    [3] Lerch, F. J., 1983. Status of the geopotential, Ret——Crnph,s. Space Phys,21, 3, 560——565.

    [4] Khan, M. A,1983. Accuracy of the earth's gravity field models. Phys. Earth Planet. Inter., 31, 231——240

    [5] 李瑞浩,I988.重力学引论.地震出版社,北京.

    [6] Loch, F. J., Putney, B. H., Wagner, C. A., Klosko, S. M., 1981. Goddard Earth Models for ceanographic Applications (GEM lOB and 10C). Marine Geodesy, S, 2, 145——187.

    [7] 曾融生,1984.固体地球物理学导论,172——173.科学出版社,北京.

    [8] 王石任,1987重力异常源深度分布的探讨.地震学报,9,增刊,371——381,

    [9] 陈运泰、黄立人、林邦慧、刘妙龙、王新华,1979.用大地测量资料反演的1976年唐山地震的位错模式,地球物理学报,22,201——217,

    [10] Stacey, F. D.著,中国科学技术大学地球物理教研室译,1981地球物理学,340——345地震出版社,北京.

    [11] Mckcnzic, D. P., Roberts, J. M,Weiss, N. O., 1974. Convection in the earth's mantle: Towards a nume——rical simulation, J. Fluid Mech., 62, part, 3, 465——538.

    [12] H,tKrr, B. H., Clayton, R. Richards, M. A., l.omer,R. P,Dziewonski, A. M,1985. Lower ,uantlr lrererogeneity. dynamic topography and geoid, N.rzure, 313, 511——545.

    [1] Dzicwonski, A. M., 1984. Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. J. Grapl:ys. Rrs. 80. 87, 5929——5952.

    [2] Woodhousc, J. H.&Dziewonski, A. M., 1984, Mapping the upper mantle:Three——dimensional modeling of earth structure by inversion of seismic wavefurttts. J. Craphys. Rr. 89, 87, 5953——59$6.

    [3] Lerch, F. J., 1983. Status of the geopotential, Ret——Crnph,s. Space Phys,21, 3, 560——565.

    [4] Khan, M. A,1983. Accuracy of the earth's gravity field models. Phys. Earth Planet. Inter., 31, 231——240

    [5] 李瑞浩,I988.重力学引论.地震出版社,北京.

    [6] Loch, F. J., Putney, B. H., Wagner, C. A., Klosko, S. M., 1981. Goddard Earth Models for ceanographic Applications (GEM lOB and 10C). Marine Geodesy, S, 2, 145——187.

    [7] 曾融生,1984.固体地球物理学导论,172——173.科学出版社,北京.

    [8] 王石任,1987重力异常源深度分布的探讨.地震学报,9,增刊,371——381,

    [9] 陈运泰、黄立人、林邦慧、刘妙龙、王新华,1979.用大地测量资料反演的1976年唐山地震的位错模式,地球物理学报,22,201——217,

    [10] Stacey, F. D.著,中国科学技术大学地球物理教研室译,1981地球物理学,340——345地震出版社,北京.

    [11] Mckcnzic, D. P., Roberts, J. M,Weiss, N. O., 1974. Convection in the earth's mantle: Towards a nume——rical simulation, J. Fluid Mech., 62, part, 3, 465——538.

    [12] H,tKrr, B. H., Clayton, R. Richards, M. A., l.omer,R. P,Dziewonski, A. M,1985. Lower ,uantlr lrererogeneity. dynamic topography and geoid, N.rzure, 313, 511——545.
  • Related Articles

  • Cited by

    Periodical cited type(7)

    1. 赵天次,赵伯明. 基于小波分析的近断层地震动最强速度脉冲识别方法与应用. 振动与冲击. 2021(08): 41-49 .
    2. 赵晓芬,温增平,陈波,刘奕君. 适用于全周期结构的速度脉冲型地震动强度表征参数研究. 地震学报. 2019(04): 536-547 . 本站查看
    3. 赵晓芬,温增平,陈波. 近断层地震动最强速度脉冲方向分量特性研究. 地震学报. 2018(05): 673-688+690 . 本站查看
    4. 陈秋旺. 近断层地震下大底盘框架结构非线性响应分析及减震控制. 福建建设科技. 2018(06): 1-5 .
    5. 李敏,黄天璨. 近断层地震动作用下超高层结构地震响应分析. 华南地震. 2018(04): 84-89 .
    6. 杜永峰,宋翔,包超,朱翔,谈志鸿. 近场地震作用下RC框架鲁棒性分析. 振动与冲击. 2016(03): 192-197 .
    7. 张常勇,钟铁毅,李徐,杨海洋. FPS隔震简支梁桥近断层地震响应研究. 世界桥梁. 2014(05): 48-53 .

    Other cited types(12)

Catalog

    Article views (1310) PDF downloads (89) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return