Guo LU-CANup, PANG MING-HUup2com s. 1981: SURFACE-WAVE MAGNITUDE OF EARTHQUAKES AND ITS STATION CORRECTION. Acta Seismologica Sinica, 3(3): 312-320.
Citation: Guo LU-CANup, PANG MING-HUup2com s. 1981: SURFACE-WAVE MAGNITUDE OF EARTHQUAKES AND ITS STATION CORRECTION. Acta Seismologica Sinica, 3(3): 312-320.

SURFACE-WAVE MAGNITUDE OF EARTHQUAKES AND ITS STATION CORRECTION

More Information
  • Published Date: August 31, 2011
  • In this paper, we have described the derivation of the formula currently used in China for surface-wave magnitude determination at the Beijing Seismic Station. The following formula is used: Ms=log(A/T)max+(△).Taking the surface wave magnitude of the Pasadena Seismic station given by Gutenberg and Richter, as the standard magnitude, the calibrating function of the surface-wave magnitude (△) and formula for the Beijing Seismic Station has been derived by using the mean value of surface-wave magnitudes with the Pasadena standard from 6 well-known seismic stations in the world. The calibrating function (△) was determined empirically for distances A= 8-130as follows:(△)=(1.660.09)log△+(3.500.14) In the epicentral distances △=130-180, a modification is made for the absorption coefficient k, thus the formula of the calibrating function derived semi-empirically and semi-theoretically is expressed as follows: (△)=6.775+1/2[(2.147e-0.04465△+1.325)(△-90)10-2logsin△+1/3(log△-1.954)] In order to improve the accuracy of the surface-wave magnitude determinations, the standard of the Beijing station is extended to be used in 12 basic seismic stations in China. The station correction of each seismic station has been calculated by using the data of 360 earthquakes, thus improving the consistency for determining the surface-wave magnitudes.
  • [1] B .Gutenberg, Amplitudes of surface waves a.nd magnitudes of shallow earthquakes, Bull. Seism. Soc, dm., 35, 1, 3——12, 1945.

    [2] J. Vaně. V. Kárnik, H. B. Кондорская, С. Л. Соловьев, Н. В. Шебалин, …, Стандартизация Шкалы магнитуд, Изв. АНСССР. Сер. Геофцз., No 2. 153——158, 1962.

    [3] V. Kárnik, Maguituden bestimmung Europäischer Nahbeben, Trav. Inst. Geophy. Acad. Tschecosl. Sci., 47, 399——522, 1956.

    [4] 中国科学院数学研究所统计组编, 方差分析, 科学出版社, 1977年。

    [1] B .Gutenberg, Amplitudes of surface waves a.nd magnitudes of shallow earthquakes, Bull. Seism. Soc, dm., 35, 1, 3——12, 1945.

    [2] J. Vaně. V. Kárnik, H. B. Кондорская, С. Л. Соловьев, Н. В. Шебалин, …, Стандартизация Шкалы магнитуд, Изв. АНСССР. Сер. Геофцз., No 2. 153——158, 1962.

    [3] V. Kárnik, Maguituden bestimmung Europäischer Nahbeben, Trav. Inst. Geophy. Acad. Tschecosl. Sci., 47, 399——522, 1956.

    [4] 中国科学院数学研究所统计组编, 方差分析, 科学出版社, 1977年。
  • Cited by

    Periodical cited type(10)

    1. 高玲举,于磊,陈聪,刘祜,周俊杰,高爽,韩杰. 重力资料在二连盆地构造单元区划及断裂构造识别中的应用. 铀矿地质. 2024(04): 729-739 .
    2. 谢立洋,刘贺楠,段忠义. 山东聊城许营地区重磁场特征及其深部隐伏矿产预测分析. 陕西地质. 2024(02): 79-86 .
    3. 王润生,武斌,张海瑞,于嘉宾,董彦龙,郭国强,康一鸣. 山东省临沂凸起东北缘重力场特征及大地构造单元边界讨论. 物探与化探. 2023(02): 279-289 .
    4. 崔洋,康凤新,钟振楠,杨询昌,隋海波,赵强. 鲁西北平原地热热源机制的气体同位素约束. 地球学报. 2023(01): 93-106 .
    5. 周铭,段永红,檀玉娟,邱勇. 基于密集台阵的东濮凹陷中北段浅层速度结构. 地震地质. 2023(02): 517-535 .
    6. 吕丁友,杨海风,于海波,刘朋波,邓辉,张参. 渤海海域印支期逆冲推覆体系的分带性及其动力学成因机制. 石油与天然气地质. 2023(03): 720-734 .
    7. 高玲举,于磊,刘祜. 航磁资料在二连盆地构造区划及断裂体系识别中的应用. 铀矿地质. 2022(04): 771-780 .
    8. 曹艳玲,崔玉良,吴波,刘连,江海洋,崔素,王威,范振华. 山东临沂地区古生代复合热储成矿模式研究. 地质与勘探. 2021(05): 1136-1148 .
    9. 张建太,于磊,刘传朋,李兆营,王伟德,高玲举. 鲁西金刚石原生矿床区域重磁异常特征及深部地质构造背景. 地质学报. 2020(09): 2783-2795 .
    10. Lei Jiang,Lanbo Liu,Zhiping Xu,Xiaoguo Deng,Lipu Yang,Wei Xiong,Shunqiang Xu. Crustal density structure of the southern segment of the Liaocheng-Lankao fault, China. Geodesy and Geodynamics. 2019(05): 347-355 .

    Other cited types(3)

Catalog

    Article views (1142) PDF downloads (118) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return