Liu Liuup, Wei Dongpingup,. 2012: Numerical simulation of the intraplate stress field inChinamainland and adjacent areas and its dynamic implications. Acta Seismologica Sinica, 34(6): 727-740.
Citation: Liu Liuup, Wei Dongpingup,. 2012: Numerical simulation of the intraplate stress field inChinamainland and adjacent areas and its dynamic implications. Acta Seismologica Sinica, 34(6): 727-740.

Numerical simulation of the intraplate stress field inChinamainland and adjacent areas and its dynamic implications

More Information
  • Published Date: November 13, 2012
  • Located in the southeast of Eurasian plate, China mainland is subject to collision, extrusion and subduction of Indian plate, Pacific plate and Philippine Sea plate, so the tectonic stress field there and its dynamical mechanism are very complex. Using a pseudo 3D finite element method and with the orientation and regime indicators from World Stress Map 2008 (WSM2008) database as principal constraints, this paper numerically simulated driving forces onChina mainland andadjacent areas, and estimated the magnitude and direction of plate boundary forces. We analyzed three typical models. The results show that the asthenospheric static push forces have small influence on the tectonic stress field, while the plate boundary forces play a significant role. The collision of Indian plate with Eurasian plate in the Himalayan orogenic belt controls the basic pattern of stress field in China mainland, and is an important cause of lots of strike-slip earthquakes in Sichuan-Yunnan region. The boundary forces of Ryukyu Trench-Nankai Trough subduction zone display push-to-pull segmental feature. Baikal rift is under the action of pull force. Further analysis reveals that in most areas of China mainland the distribution of maximum horizontal shear stress shows a good positive spatial correlation with the radiated seismic energy density in this region.
  • 陈颙.1988. 地壳岩石的力学性能: 理论基础与试验方法[M]. 北京: 地震出版社: 14——16.

    邓起东, 张裕明, 徐桂林, 范福田. 1979. 中国构造应力场特征及其与板块运动的关系[J]. 地震地质, 1(1): 11——22.

    冯向东, 魏东平, 陈棋福. 2005. 基于观测应力场的大华北地区动力学机制探讨[J]. 地震学报, 27(1): 110——119.

    冯向东, 刘卫华, 魏东平. 2006. 印度—澳大利亚板块应力场数值模拟及其动力学分析[J]. 地质力学学报, 12(4): 429——440.

    傅容珊, 黄建华, 徐耀民, 李力刚, 常筱华. 2000. 印度与欧亚板块碰撞的数值模拟和现代中国大陆形变[J]. 地震学报, 22(1): 1——7.

    皇甫海泉, 魏东平. 2010. 冲绳板块应力场数值模拟及其动力学分析[J]. 地震学报, 32(5): 529——543.

    江为为, 刘少华, 郝天珧, 宋海斌. 2002. 应用重力资料估算东海冲绳海槽地壳厚度[J]. 地球物理学进展, 17(1): 35——41.

    焦明若, 张国民, 车时, 刘杰. 1999. 中国大陆及其周边地区构造应力场的数值计算及其在地震活动性解释上的应用[J]. 地震学报, 21(2): 123——132.

    李廷栋. 2010. 中国岩石圈的基本特征[J]. 地学前缘, 17(3): 1——13. 

    梁海华, 侯建军, 刘树文, 常祖峰, 阎志梅. 1999. 中国构造应力场与大震复发周期关系的数值模拟[J]. 地震地质, 21(1): 51——57.

    汪素云, 陈培善. 1980. 中国及邻区现代构造应力场的数值模拟[J]. 地球物理学报, 23(1): 35——45.

    汪素云, 许忠淮, 俞言样, 张琳. 1996. 中国及其邻区周围板块作用力的研究[J]. 地球物理学报, 39(6): 764——771.

    魏东平. 2000. 软流层静压推力及其板块动力学意义[J]. 地质力学学报, 6(1): 4——14.

    魏东平, 左如斌, 濑野徹三. 2001. 全球观测应力场应力取向数据的加权统计分析[J]. 中国科学技术大学学报, 31(1): 50——56.

    谢富仁, 崔效锋, 赵建涛, 陈群策, 李宏. 2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 47(4): 654——662.

    徐纪人, 赵志新. 2006. 中国岩石圈应力场与构造运动区域特征[J]. 中国地质, 33(4): 782——792.

    徐纪人, 赵志新, 石川有三. 2008. 中国大陆地壳应力场与构造运动区域特征研究[J]. 地球物理学报, 51(3): 770——781.

    许忠淮, 汪素云, 俞言祥. 1992. 根据观测的应力方向利用有限单元方法反演板块边界作用力[J]. 地震学报, 14(4): 446——455.

    许忠淮, 吴少武. 1997. 南黄海和东海地区现代构造应力场特征的研究[J]. 地球物理学报, 40(6): 773——781.

    胥颐, 刘建华, 郝天珧, 刘劲松, 李志伟. 2006. 中国东部海域及邻区岩石层地幔的P波速度结构与构造分析[J]. 地球物理学报, 49(4): 1053——1061.

    臧绍先, 宁杰远. 2002. 菲律宾海板块与欧亚板块的相互作用及其对东亚构造运动的影响[J]. 地球物理学报, 45(2): 188——197.

    章纯. 2007. 中国东部地区地震活动与构造应力场关系的有限元数值模拟[J]. 西北地震学报, 29(3): 230——235.

    张东宁, 许忠淮. 1994. 青藏高原现代构造应力状态及构造运动的三维弹粘性数值模拟[J]. 中国地震, 10(2): 136——143.

    张东宁, 许忠淮. 1999. 中国大陆岩石层动力学数值模型的边界条件[J]. 地震学报, 21(2): 133——139.

    朱守彪, 石耀霖. 2006. 中国大陆及邻区构造应力场成因的研究[J]. 中国科学: D辑, 36(12): 1077——1083.

    An M, Shi Y. 2006. Lithospheric thickness of the Chinese continent[J]. Phys Earth Planet Interi, 159(3——4): 257——266.

    Bassin C, Laske G, Masters G. 2000. The current limits of resolution for surface wave tomography in North America[J]. EOS Trans AGU, 81: F897.

    Bird P. 2003. An updated digital model of plate boundaries[J]. Geochem Geophys Geosyst, 4(3): 1027, doi:10.1029/2001GC000252.

    Bird P, Liu Z, Rucker W K. 2008. Stresses that drive the plates from below: Definitions, computational path, model optimization, and error analysis[J]. J Geophys Res, 113(B11406): 32, doi:10.1029/2007JB005460.

    Choy G L, Boatwright J L. 1995. Global patterns of radiated seismic energy and apparent stress[J]. J Geophys Res, 100(B9): 18205——18218, 18228.

    Cloetingh S, Wortel R. 1986. Stress in the Indo——Australian plate[J]. Tectonophysics, 132(1——3): 49——67.

    Coblentz D D, Richardson R M. 1995. Statistical trends in the intraplate stress field[J]. J Geophys Res, 100(B10): 20245——20220, 20255.

    Coblentz D D, Richardson R M. 1996. Analysis of the South American intraplate stress field[J]. J Geophys Res, 101(B4): 8643——8657.

    Coblentz D D, Zhou S, Hills R R, Richardson R M, Sandiford M. 1998. Topography, boundary forces and the Indo——Australian intraplate stress field[J]. J Geophys Res, 103( B1): 919——932.

    Conrad C, Lithgow——Bertelloni C. 2006. Influence of continental roots and asthenosphere on platemantle coupling[J]. Geophys Res Lett, 33(5).

    Copley A, Avouac J P, Royer J Y. 2010. India——Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions[J]. J Geophys Res B: Solid Earth, 115(B03410): 14, doi.10.1029/2009JB006634.

    DeMets C, Gordon R G, Argus D F. 2010. Geologically current plate motions[J]. Geophys J Int, 181(1): 1——80.

    Flesch L M, Haines A J, William E H. 2001. Dynamics of the IndiaEurasia collision zone[J]. J Geophys Res, 106(B8): 16435——16460.

    Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion[J]. Geophys J R astr Soc, 43(1): 163——200.

    Gripp A E, Gordon R G. 1990. Current plate velocities relative to the hotspots incorporating the NUVEL 1 global plate motion model[J]. Geophys Res Lett, 17(8): 1109——1112.

    Gripp A E, Gordon R G. 2002. Young tracks of hotspots and current plate velocities[J]. Geophys J Int, 150(2): 321——361.

    Gutenberg B, Richter C F. 1956. Earthquake magnitude, intensity, energy, and acceleration (Second paper) [J]. Bull Seism Soc Amer, 46(2): 105——145.

    Hanks T C, Kanamori H. 1979. A moment magnitude scale[J]. J Geophys Res, 84(B5): 2348——2350.

    Kincaid C, Silver P. 1996. The role of viscous dissipation in the orogenic process[J]. Earth Planet Sci Lett, 142(3——4): 271——288.

    Kubo A, Fukuyama E. 2003. Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes[J]. Earth Planet Sci Lett, 210: 305——316.

    Li S, Mooney W D, Fan J. 2006. Crustal structure of mainland China from deep seismic sounding data[J]. Tectonophysics, 420(1——2): 239——252.

    Lithgow——Bertelloni C, Guynn J H. 2004. Origin of the lithospheric stress field[J]. J Geophys Res, 109(B01408): 32, doi:10.1029/2003JB0062467.

    McKenzie D. 1967. Some remarks on heat flow and gravity anomalies[J]. J Geopys Res, 72(24): 6261——6273.

    Müller R D, Sdrolias M, Gaina C, Roest W R. 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust[J]. Geochem Geophys Geosyst, 9(Q04006), doi:10.1029/2007GC001743.

    Pacanovsky K M, Davis D M, Richardson R M, Coblentz D. 1999. Intraplate stresses and platedriving forces in the Philippine Sea Plate[J]. J Geophys Res, 104(B1): 1095——1110.

    Reynolds S D, Coblentz D D, Richard R H. 2002. Tectonic forces controlling the regional intraplate stress field in continental Australia: Results from new finite element modeling[J]. J Geophys Res, 107(2131): 15, doi:10.1029/2001JB000408.

    Richardson R M, Solomon S C, Sleep N H. 1979. Tectonic stress in the plates[J]. Rev Geophys, 17(5): 981——1019.

    Saito A. 1995. Differential Stress Fields in the Nazca and South American Plates: Two Dimensional Modeling Taking into Account the Plate and Crustal Structure Variations and Plate Driving Forces[D]. Tokyo: Earthquake Research Institute of University of Tokyo: 1——52.

    Stein C A, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age[J]. Nature, 359: 123——129.

    Wei D P. 1997. Pseudo——3——D Spherical Modeling of the Intraplate Sresses of the Eurasian Plate: Implications to Plate Dynamics[D]. Tokyo: Earthquake Research Institute of University of Tokyo: 1——45.

    Zhao S, Müller R D. 2003. Three——dimensional finite——element modeling of the tectonic stress field in continental Australia[J]. Geol Soc of Aus Spec Publ, 372: 71——89. 

    Zoback M L, Zoback M D, Adams J, Assumpcao M, Bell S, Bergman E A, Blumling P, Brereton N R, Denham D, Ding J, Fuchs K, Gay N, Gregersen S, Gupta H K, Gvishiani A, Jacob K, Klein R, Knoll P, Magee M, Mercier J L, Muller B C, Paquin C, Rajendran K, Stephansson O, Suarez G, Suter M, Udias A, Xu Z H, Zhizhin M. 1989. Global patterns of tectonic stress[J]. Nature, 341: 291——298.

    Zoback M L, Magee M. 1991. Stress magnitudes in the crust: Constraints from stress orientation and relative magnitude data[J]. Phil Trans R Soc Lond A: Physical and Engineering Sciences, 337(1645): 181——194.

    Zoback M L. 1992. First—— and second—— order patterns of stress in the lithosphere: The World Stress Map Project[J]. J Geophys Res, 97(B8): 11703——11728.

    陈颙.1988. 地壳岩石的力学性能: 理论基础与试验方法[M]. 北京: 地震出版社: 14——16.

    邓起东, 张裕明, 徐桂林, 范福田. 1979. 中国构造应力场特征及其与板块运动的关系[J]. 地震地质, 1(1): 11——22.

    冯向东, 魏东平, 陈棋福. 2005. 基于观测应力场的大华北地区动力学机制探讨[J]. 地震学报, 27(1): 110——119.

    冯向东, 刘卫华, 魏东平. 2006. 印度—澳大利亚板块应力场数值模拟及其动力学分析[J]. 地质力学学报, 12(4): 429——440.

    傅容珊, 黄建华, 徐耀民, 李力刚, 常筱华. 2000. 印度与欧亚板块碰撞的数值模拟和现代中国大陆形变[J]. 地震学报, 22(1): 1——7.

    皇甫海泉, 魏东平. 2010. 冲绳板块应力场数值模拟及其动力学分析[J]. 地震学报, 32(5): 529——543.

    江为为, 刘少华, 郝天珧, 宋海斌. 2002. 应用重力资料估算东海冲绳海槽地壳厚度[J]. 地球物理学进展, 17(1): 35——41.

    焦明若, 张国民, 车时, 刘杰. 1999. 中国大陆及其周边地区构造应力场的数值计算及其在地震活动性解释上的应用[J]. 地震学报, 21(2): 123——132.

    李廷栋. 2010. 中国岩石圈的基本特征[J]. 地学前缘, 17(3): 1——13. 

    梁海华, 侯建军, 刘树文, 常祖峰, 阎志梅. 1999. 中国构造应力场与大震复发周期关系的数值模拟[J]. 地震地质, 21(1): 51——57.

    汪素云, 陈培善. 1980. 中国及邻区现代构造应力场的数值模拟[J]. 地球物理学报, 23(1): 35——45.

    汪素云, 许忠淮, 俞言样, 张琳. 1996. 中国及其邻区周围板块作用力的研究[J]. 地球物理学报, 39(6): 764——771.

    魏东平. 2000. 软流层静压推力及其板块动力学意义[J]. 地质力学学报, 6(1): 4——14.

    魏东平, 左如斌, 濑野徹三. 2001. 全球观测应力场应力取向数据的加权统计分析[J]. 中国科学技术大学学报, 31(1): 50——56.

    谢富仁, 崔效锋, 赵建涛, 陈群策, 李宏. 2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 47(4): 654——662.

    徐纪人, 赵志新. 2006. 中国岩石圈应力场与构造运动区域特征[J]. 中国地质, 33(4): 782——792.

    徐纪人, 赵志新, 石川有三. 2008. 中国大陆地壳应力场与构造运动区域特征研究[J]. 地球物理学报, 51(3): 770——781.

    许忠淮, 汪素云, 俞言祥. 1992. 根据观测的应力方向利用有限单元方法反演板块边界作用力[J]. 地震学报, 14(4): 446——455.

    许忠淮, 吴少武. 1997. 南黄海和东海地区现代构造应力场特征的研究[J]. 地球物理学报, 40(6): 773——781.

    胥颐, 刘建华, 郝天珧, 刘劲松, 李志伟. 2006. 中国东部海域及邻区岩石层地幔的P波速度结构与构造分析[J]. 地球物理学报, 49(4): 1053——1061.

    臧绍先, 宁杰远. 2002. 菲律宾海板块与欧亚板块的相互作用及其对东亚构造运动的影响[J]. 地球物理学报, 45(2): 188——197.

    章纯. 2007. 中国东部地区地震活动与构造应力场关系的有限元数值模拟[J]. 西北地震学报, 29(3): 230——235.

    张东宁, 许忠淮. 1994. 青藏高原现代构造应力状态及构造运动的三维弹粘性数值模拟[J]. 中国地震, 10(2): 136——143.

    张东宁, 许忠淮. 1999. 中国大陆岩石层动力学数值模型的边界条件[J]. 地震学报, 21(2): 133——139.

    朱守彪, 石耀霖. 2006. 中国大陆及邻区构造应力场成因的研究[J]. 中国科学: D辑, 36(12): 1077——1083.

    An M, Shi Y. 2006. Lithospheric thickness of the Chinese continent[J]. Phys Earth Planet Interi, 159(3——4): 257——266.

    Bassin C, Laske G, Masters G. 2000. The current limits of resolution for surface wave tomography in North America[J]. EOS Trans AGU, 81: F897.

    Bird P. 2003. An updated digital model of plate boundaries[J]. Geochem Geophys Geosyst, 4(3): 1027, doi:10.1029/2001GC000252.

    Bird P, Liu Z, Rucker W K. 2008. Stresses that drive the plates from below: Definitions, computational path, model optimization, and error analysis[J]. J Geophys Res, 113(B11406): 32, doi:10.1029/2007JB005460.

    Choy G L, Boatwright J L. 1995. Global patterns of radiated seismic energy and apparent stress[J]. J Geophys Res, 100(B9): 18205——18218, 18228.

    Cloetingh S, Wortel R. 1986. Stress in the Indo——Australian plate[J]. Tectonophysics, 132(1——3): 49——67.

    Coblentz D D, Richardson R M. 1995. Statistical trends in the intraplate stress field[J]. J Geophys Res, 100(B10): 20245——20220, 20255.

    Coblentz D D, Richardson R M. 1996. Analysis of the South American intraplate stress field[J]. J Geophys Res, 101(B4): 8643——8657.

    Coblentz D D, Zhou S, Hills R R, Richardson R M, Sandiford M. 1998. Topography, boundary forces and the Indo——Australian intraplate stress field[J]. J Geophys Res, 103( B1): 919——932.

    Conrad C, Lithgow——Bertelloni C. 2006. Influence of continental roots and asthenosphere on platemantle coupling[J]. Geophys Res Lett, 33(5).

    Copley A, Avouac J P, Royer J Y. 2010. India——Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions[J]. J Geophys Res B: Solid Earth, 115(B03410): 14, doi.10.1029/2009JB006634.

    DeMets C, Gordon R G, Argus D F. 2010. Geologically current plate motions[J]. Geophys J Int, 181(1): 1——80.

    Flesch L M, Haines A J, William E H. 2001. Dynamics of the IndiaEurasia collision zone[J]. J Geophys Res, 106(B8): 16435——16460.

    Forsyth D, Uyeda S. 1975. On the relative importance of the driving forces of plate motion[J]. Geophys J R astr Soc, 43(1): 163——200.

    Gripp A E, Gordon R G. 1990. Current plate velocities relative to the hotspots incorporating the NUVEL 1 global plate motion model[J]. Geophys Res Lett, 17(8): 1109——1112.

    Gripp A E, Gordon R G. 2002. Young tracks of hotspots and current plate velocities[J]. Geophys J Int, 150(2): 321——361.

    Gutenberg B, Richter C F. 1956. Earthquake magnitude, intensity, energy, and acceleration (Second paper) [J]. Bull Seism Soc Amer, 46(2): 105——145.

    Hanks T C, Kanamori H. 1979. A moment magnitude scale[J]. J Geophys Res, 84(B5): 2348——2350.

    Kincaid C, Silver P. 1996. The role of viscous dissipation in the orogenic process[J]. Earth Planet Sci Lett, 142(3——4): 271——288.

    Kubo A, Fukuyama E. 2003. Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes[J]. Earth Planet Sci Lett, 210: 305——316.

    Li S, Mooney W D, Fan J. 2006. Crustal structure of mainland China from deep seismic sounding data[J]. Tectonophysics, 420(1——2): 239——252.

    Lithgow——Bertelloni C, Guynn J H. 2004. Origin of the lithospheric stress field[J]. J Geophys Res, 109(B01408): 32, doi:10.1029/2003JB0062467.

    McKenzie D. 1967. Some remarks on heat flow and gravity anomalies[J]. J Geopys Res, 72(24): 6261——6273.

    Müller R D, Sdrolias M, Gaina C, Roest W R. 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust[J]. Geochem Geophys Geosyst, 9(Q04006), doi:10.1029/2007GC001743.

    Pacanovsky K M, Davis D M, Richardson R M, Coblentz D. 1999. Intraplate stresses and platedriving forces in the Philippine Sea Plate[J]. J Geophys Res, 104(B1): 1095——1110.

    Reynolds S D, Coblentz D D, Richard R H. 2002. Tectonic forces controlling the regional intraplate stress field in continental Australia: Results from new finite element modeling[J]. J Geophys Res, 107(2131): 15, doi:10.1029/2001JB000408.

    Richardson R M, Solomon S C, Sleep N H. 1979. Tectonic stress in the plates[J]. Rev Geophys, 17(5): 981——1019.

    Saito A. 1995. Differential Stress Fields in the Nazca and South American Plates: Two Dimensional Modeling Taking into Account the Plate and Crustal Structure Variations and Plate Driving Forces[D]. Tokyo: Earthquake Research Institute of University of Tokyo: 1——52.

    Stein C A, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age[J]. Nature, 359: 123——129.

    Wei D P. 1997. Pseudo——3——D Spherical Modeling of the Intraplate Sresses of the Eurasian Plate: Implications to Plate Dynamics[D]. Tokyo: Earthquake Research Institute of University of Tokyo: 1——45.

    Zhao S, Müller R D. 2003. Three——dimensional finite——element modeling of the tectonic stress field in continental Australia[J]. Geol Soc of Aus Spec Publ, 372: 71——89. 

    Zoback M L, Zoback M D, Adams J, Assumpcao M, Bell S, Bergman E A, Blumling P, Brereton N R, Denham D, Ding J, Fuchs K, Gay N, Gregersen S, Gupta H K, Gvishiani A, Jacob K, Klein R, Knoll P, Magee M, Mercier J L, Muller B C, Paquin C, Rajendran K, Stephansson O, Suarez G, Suter M, Udias A, Xu Z H, Zhizhin M. 1989. Global patterns of tectonic stress[J]. Nature, 341: 291——298.

    Zoback M L, Magee M. 1991. Stress magnitudes in the crust: Constraints from stress orientation and relative magnitude data[J]. Phil Trans R Soc Lond A: Physical and Engineering Sciences, 337(1645): 181——194.

    Zoback M L. 1992. First—— and second—— order patterns of stress in the lithosphere: The World Stress Map Project[J]. J Geophys Res, 97(B8): 11703——11728.

  • Cited by

    Periodical cited type(7)

    1. 梁光河,杨巍然. 驱动印度大陆北漂的动力是什么?. 地学前缘. 2023(02): 68-80 .
    2. 仲启蒙,邵博,侯贵廷. 汾渭地堑岩石圈的应力场数值模拟与分析. 地球物理学进展. 2022(01): 152-163 .
    3. 马海勇,罗安湘,王朝阳,欧阳征健,冯娟萍. 弧形构造带形成演化特征研究. 西安科技大学学报. 2022(04): 752-759 .
    4. 徐佳静,张雅茜,张建勇,孙丽. 2022年四川泸定M_S 6.8地震预警处理结果分析. 地震地磁观测与研究. 2022(06): 131-141 .
    5. 毛小平,陆旭凌弘,王晓明,范晓杰,耿涛,王昊宸. 周向应力在地壳运动中的作用. 地学前缘. 2020(01): 221-233 .
    6. 万天丰,李三忠,杨巍然,梁光河,毛小平,刘银河,於文辉,陈志耕,丁卫平,胡宝群,付虹,方曙,唐春安,莫宣学. 板块运动的机制与动力来源学术争鸣. 地学前缘. 2019(06): 309-319 .
    7. 谢丁,吴世敏,孙萍. 南海北缘中段近岸陆区晚中生代以来构造应力场反演——以广东樟木头地区为例. 海洋地质与第四纪地质. 2016(03): 91-102 .

    Other cited types(2)

Catalog

    Article views (4203) PDF downloads (710) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return