CAI NAICHENGup, LIU WENTAIup2com s. 1984: THEORY OF COMPLETE FAILURE OF INCLUSION MATERIAL AT THE EARTHQUAKE SOURCE(1)--STRESS DISTRIBU TION OF AN ELLIPTICAL INCULUSION OF DIFFERENT METERIAL. Acta Seismologica Sinica, 6(4): 429-439.
Citation: CAI NAICHENGup, LIU WENTAIup2com s. 1984: THEORY OF COMPLETE FAILURE OF INCLUSION MATERIAL AT THE EARTHQUAKE SOURCE(1)--STRESS DISTRIBU TION OF AN ELLIPTICAL INCULUSION OF DIFFERENT METERIAL. Acta Seismologica Sinica, 6(4): 429-439.

THEORY OF COMPLETE FAILURE OF INCLUSION MATERIAL AT THE EARTHQUAKE SOURCE(1)--STRESS DISTRIBU TION OF AN ELLIPTICAL INCULUSION OF DIFFERENT METERIAL

More Information
  • Published Date: August 31, 2011
  • For a two-dimensional infinite medium containing an elliptical inclusion of different material, elastic stress distribution formulas are derived. It is pointed out that in the inclusion theory of B.T. Brady there are two errors, namely, (1) the stress component parallel to the minor axis within the elliptical inclusion is not a tensile stress, under far field compression in two directions; (2) shear stress within the inclusion is neither a function of position nor a second order quantity and thus can not be neglected.
  • [1] Donnell, L. H., Stress concentrations due to elliptical discontinuities in plates under edge forces Theodore V. Karman Anniversary Volume, California Institute of Technology, Pasadena, Calif.293——309, 1941.

    [2] Brady, B. T., Theory of earthquakes, I, A scale Independent theory of rock failure, Pure Appli Geophys. 112, 4, 1974.

    [3] Мусхелишвили,Н.И.,Некоторые оснвые задаги математигеской теорий упругости AH CCCP 1954.(数学弹性力学的几个基本间题,赵惠元译,科学出版社,1958).

    [4] Knott,J.F., Fundamental of fracture mechanics, Chapter 3,Landon Butterwarths, 1973.

    [5] Jaeger,J,C., Elasticity, fracture and flow with engineering and geological applications, John Wiley and Sons,New York,1964.

    [1] Donnell, L. H., Stress concentrations due to elliptical discontinuities in plates under edge forces Theodore V. Karman Anniversary Volume, California Institute of Technology, Pasadena, Calif.293——309, 1941.

    [2] Brady, B. T., Theory of earthquakes, I, A scale Independent theory of rock failure, Pure Appli Geophys. 112, 4, 1974.

    [3] Мусхелишвили,Н.И.,Некоторые оснвые задаги математигеской теорий упругости AH CCCP 1954.(数学弹性力学的几个基本间题,赵惠元译,科学出版社,1958).

    [4] Knott,J.F., Fundamental of fracture mechanics, Chapter 3,Landon Butterwarths, 1973.

    [5] Jaeger,J,C., Elasticity, fracture and flow with engineering and geological applications, John Wiley and Sons,New York,1964.
  • Related Articles

  • Cited by

    Periodical cited type(11)

    1. 陈科睿,陈继锋,尹欣欣. 2023年甘肃积石山M_S6.2地震精定位及发震构造研究. 地震工程学报. 2024(04): 932-941 .
    2. 万永革,关兆萱,梁玮航,代潇. 2023年土耳其双震震源处的断裂几何形状与应力场. 地球物理学报. 2024(12): 4622-4639 .
    3. 万永革,黄少华,王福昌,许英才,余海琳. 2022年门源地震序列揭示的断层几何形状及滑动特性. 地球物理学报. 2023(07): 2796-2810 .
    4. 万永革,余海琳,王福昌,许英才,黄少华. 2022年门源M_S 6.9地震序列的断层形状及滑动特性研究. 地震地磁观测与研究. 2022(S1): 21-24 .
    5. 刘胤池,李庶林,周梦婧,唐超. 基于PCA法的岩体震源破坏面产状分析及工程应用. 金属矿山. 2021(09): 65-71 .
    6. 胡晓辉,盛书中,万永革,李振月,李泽潇,杨帆. 基于国家地震科学数据开展断层面参数研究的初探——以唐山地震为例. 震灾防御技术. 2019(02): 341-351 .
    7. 段虎荣,陈胜雷,李闰,闫全超. 小震震源机制解反演芦山断层倾角. 地球物理学进展. 2019(05): 1743-1749 .
    8. 段虎荣,闫全超,李闰,陈胜雷. 基于随机抽样一致性-网格搜索方法反演断层面倾角. 地震学报. 2019(05): 585-599+680 . 本站查看
    9. 李文,徐慧. 基于频繁项目集的震前遥感异常信息挖掘. 计算机与现代化. 2016(08): 16-21 .
    10. 郭斌,王斌,梁雪萍,严超,郭灏明. 非线性最小二乘法拟合断层面参数及其MatLab实现. 四川地震. 2016(03): 29-33 .
    11. 盛书中,万永革,王未来,郑爽,石砚斌,李迎秋. 2010年玉树M_S 7.1地震发震断层面参数的确定. 地球物理学进展. 2014(04): 1555-1562 .

    Other cited types(4)

Catalog

    Article views (1009) PDF downloads (71) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return