Cui Huihui, Zhou Yuanze. 2016: Detecting the structure of the mantle transition zone in Japan subduction zone from the waveform triplications. Acta Seismologica Sinica, 38(5): 659-670.
Citation: Cui Huihui, Zhou Yuanze. 2016: Detecting the structure of the mantle transition zone in Japan subduction zone from the waveform triplications. Acta Seismologica Sinica, 38(5): 659-670.

Detecting the structure of the mantle transition zone in Japan subduction zone from the waveform triplications

More Information
  • Received Date: October 27, 2015
  • Revised Date: February 17, 2016
  • Published Date: August 31, 2016
  • This paper applies the triplicated waveforms of an intermediate-depth earthquake at the Hokkaido of Japan, retrieved from the China Digital Seismograph Network, to mapping the structure of the mantle transition zone in Japan subduction zone. The results show that the P-wave velocity structure is consis-tent to S-wave velocity structure for the region as a whole. The cold subduction slab of the western Pacific Plate causes a 10 km uplift of the 410 km discontinuity and a 25 km depression of the 660 km discontinuity; atop the two discontinuities, there are high-velocity layers associated with the slab; below the 660 km discontinuity, there is a low-velocity anomaly with the thickness of 65 km. The seismic velocity ratio (vP/vS) shows a lower value (~1.827) zone at the depth range of 210—400 km, indicating the low Poisson’s ratio signature of the oceanic plate; and the velocity ratio shows a higher value (~1.831) zone at the depth range of 560—685 km, possibly implying the hydrous environment at the base of mantle transition zone.
  • 李国辉, 眭怡, 周元泽. 2014. 基于P波三重震相的下扬子克拉通地幔转换带顶部低速层初探[J]. 地球物理学报, 57(7): 2362-2371. doi: 10.6038/cig20140730.
    Li G H, Sui Y, Zhou Y Z. 2014. Low-velocity layer atop the mantle transition zone in the lower Yangtze Craton from P waveform triplication[J]. Chinese Journal of Geophysics, 57(7): 2362-2371. doi:10.6038/cig20140730 (in Chinese).
    眭怡, 周元泽. 2015. 利用三重震相探测中国东部海域410 km深度低速层[J]. 地震学报, 37(1): 1-14. doi: 10.11939/jass.2015.01.001.
    Sui Y, Zhou Y Z. 2015. Low-velocity anomaly around 410 km beneath the Yellow and East China Seas with P wave triplications[J]. Acta Seismologica Sinica, 37(1): 1-14. doi:10.11939/jass.2015.01.001 (in Chinese).
    叶玲玲, 李娟. 2012. 东北地区660 km间断面附近波速结构研究[J]. 地震学报, 34(2): 137-146. http://www.dzxb.org/stat/ShowHtml?ContentID=28739
    Ye L L, Li J. 2012. Detecting velocity structure around 660-km discontinuity beneath northeastern China[J]. Acta Seismologica Sinica, 34(2): 137-146 (in Chinese). http://www.dzxb.org/stat/ShowHtml?ContentID=28739
    郑秀芬, 欧阳飚, 张东宁, 姚志祥, 梁建宏, 郑洁. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报, 52(5): 1412-1417. doi: 10.3969/j.issn.0001-5733.2009.05.031.
    Zheng X F, Ouyang B, Zhang D N, Yao Z X, Liang J H, Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 52(5): 1412-1417. doi:10.3969/j.issn.0001-5733.2009.05.031 (in Chinese).
    周春银, 金振民, 章军锋. 2010. 地幔转换带: 地球深部研究的重要方向[J]. 地学前缘, 17(3): 90-113. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003010.htm
    Zhou C Y, Jin Z M, Zhang J F. 2010. Mantle transition zone: An important field in the studies of Earth’s deep interior[J]. Earth Science Frontiers, 17(3): 90-113 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003010.htm
    Ai Y S, Zheng T Y, Xu W W, He Y M, Dong D. 2003. A complex 660 km discontinuity beneath northeast China[J]. Earth Planet Sci Lett, 212(1/2): 63-71. doi: 10.1016/S0012-821X(03)00266-8.
    Bassin C, Laske G, Masters G. 2000. The current limits of resolution for surface wave tomography in North America[J]. EOS Trans AGU, 81: F897. http://cn.bing.com/academic/profile?id=239093348&encoded=0&v=paper_preview&mkt=zh-cn
    Bina C R, Helffrich G. 1994. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography[J]. J Geophys Res, 99(B8): 15853-15860. doi: 10.1029/94jb00462.
    Buland R, Chapman C H. 1983. The computation of seismic travel times[J]. Bull Seismol Soc Am, 73(5): 1271-1302. http://cn.bing.com/academic/profile?id=2277535123&encoded=0&v=paper_preview&mkt=zh-cn
    Cammarano F, Goes S, Vacher P, Giardini D. 2003. Inferring upper-mantle temperatures from seismic velocities[J]. Phys Earth Planet Inter, 138(3/4): 197-222. doi: 10.1016/S0031-9201(03)00156-0.
    Chu R S, Schmandt B, Helmberger D V. 2012. Upper mantle P velocity structure beneath the midwestern United States derived from triplicated waveforms[J]. Geochem Geophys Geosyst, 13(2): Q0AK04. doi: 10.1029/2011GC003818.
    Collier J D, Helffrich G R, Wood B J. 2001. Seismic discontinuities and subduction zones[J]. Phys Earth Planet Inter, 127(1/2/3/4): 35-49. doi: 10.1016/S0031-9201(01)00220-5.
    DeMets C, Gordon R G, Argus D F, Stein S. 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions[J]. Geophys Res Lett, 21(20): 2191-2194. doi: 10.1029/94gl02118.
    Deon F, Koch-Müller M, Rhede D, Wirth R. 2011. Water and iron effect on the P-T-x coordinates of the 410-km discontinuity in the Earth upper mantle[J]. Contr Mineral Petrol, 161(4): 653-666. doi: 10.1007/s00410-010-0555-6.
    Deuss A. 2007. Seismic observations of transition-zone discontinuities beneath hotspot locations[J]. Geolog Soc Am Spec Papers, 430: 121-136. doi: 10.1130/2007.2430(07).
    Dziewonski A M, Chou T A, Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. J Geophys Res, 86(B4): 2825-2852. doi: 10.1029/JB086iB04p02825.
    Ekström G, Nettles M, Dziewoński A M. 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13017 earthquakes[J]. Phys Earth Planet Inter, 200/201: 1-9. doi: 10.1016/j.pepi.2012.04.002.
    Fukao Y, Obayashi M, Nakakuki T, the Deep Slab Project Group. 2009. Stagnant slab: A review[J]. Annu Rev Earth Planet Sci, 37: 19-46. doi: 10.1146/annurev.earth.36.031207.124224.
    Fukao Y, Obayashi M. 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity[J]. J Geophys Res, 118(11): 5920-5938. doi: 10.1002/2013JB010466.
    Gao Y, Suetsugu D, Fukao Y, Obayashi M, Shi Y T, Liu R F. 2010. Seismic discontinuities in the mantle transition zone and at the top of the lower mantle beneath eastern China and Korea: Influence of the stagnant Pacific slab[J]. Phys Earth Planet Inter, 183(1/2): 288-295. doi: 10.1016/j.pepi.2010.03.009.
    Gudmundsson , Sambridge M. 1998. A regionalized upper mantle (RUM) seismic model[J]. J Geophys Res, 103(B4): 7121-7136. doi: 10.1029/97jb02488.
    Hirose K. 2002. Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle[J]. J Geophys Res, 107(B4): 2078. doi: 10.1029/2001JB000597.
    Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions[J]. J Geophys Res, 111(B9): B09305. doi: 10.1029/2005JB004066.
    International Seismological Centre. 2012. On-line bulletin[EB/OL]. [2015-09-01]. http://www.isc.ac.uk/iscbulletin/search/bulletin/"> http://www.isc.ac.uk/iscbulletin/search/bulletin/.
    Jacobsen S D, Smyth J R, Spetzler H, Holl C M, Frost D J. 2004. Sound velocities and elastic constants of iron-bearing hydrous ringwoodite[J]. Phys Earth Planet Inter, 143/144: 47-56. doi: 10.1016/j.pepi.2003.07.019.
    Kawakatsu H, Yoshioka S. 2011. Metastable olivine wedge and deep dry cold slab beneath southwest Japan[J]. Earth Planet Sci Lett, 303(1/2): 1-10. doi: 10.1016/j.epsl.2011.01.008.
    Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int, 105(2): 429-465. doi: 10.1111/j.1365-246X.1991.tb06724.x.
    Li J, Wang X, Wang X J, Yuen D A. 2013. P and SH velocity structure in the upper mantle beneath Northeast China: Evidence for a stagnant slab in hydrous mantle transition zone[J]. Earth Planet Sci Lett, 367: 71-81. doi: 10.1016/j.epsl.2013.02.026.
    Li X Q, Sobolev S V, Kind R, Yuan X H, Estabrook C. 2000. A detailed receiver function image of the upper mantle discontinuities in the Japan subduction zone[J]. Earth Planet Sci Lett, 183(3/4): 527-541. doi: 10.1016/S0012-821X(00)00294-6.
    Li X Q, Yuan X H. 2003. Receiver functions in northeast China: Implications for slab penetration into the lower mantle in northwest Pacific subduction zone[J]. Earth Planet Sci Lett, 216(4): 679-691. doi: 10.1016/S0012-821X(03)00555-7.
    Niu F L, Levander A, Ham S, Obayashi M. 2005. Mapping the subducting Pacific slab beneath southwest Japan with Hi-net receiver functions[J]. Earth Planet Sci Lett, 239(1/2): 9-17. doi: 10.1016/j.epsl.2005.08.009.
    Obayashi M, Sugioka H, Yoshimitsu J, Fukao Y. 2006. High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity[J]. Earth Planet Sci Lett, 243(1): 149-158. doi: 10.1016/j.epsl.2005.12.032.
    Obayashi M, Yoshimitsu J, Nolet G, Fukao Y, Shiobara H, Sugioka H, Miyamachi H, Gao Y. 2013. Finite frequency whole mantle P wave tomography: Improvement of subducted slab images[J]. Geophys Res Lett, 40(21): 2013GL057401. doi: 10.1002/2013gl057401.
    Ohtani E. 2005. Water in the mantle[J]. Elements, 1(1): 25-30. doi: 10.2113/gselements.1.1.25.
    Revenaugh J, Sipkin S A. 1994. Seismic evidence for silicate melt atop the 410-km mantle discontinuity[J]. Nature, 369(6480): 474-476. doi: 10.1038/369474a0.
    Ringwood A E. 1991. Phase transformations and their bearing on the constitution and dynamics of the mantle[J]. Geochim Cosmochim Acta, 55(8): 2083-2110. doi: 10.1016/0016-7037(91)90090-R.
    Ritsema J, Deuss A, van Heijst H J, Woodhouse J H. 2011. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements[J]. Geophys J Int, 184(3): 1223-1236. doi: 10.1111/j.1365-246X.2010.04884.x.
    Smyth J R, Holl C M, Frost D J, Jacobsen S D. 2004. High pressure crystal chemistry of hydrous ringwoodite and water in the Earth’s interior[J]. Phys Earth Planet Inter, 143/144: 271-278. doi: 10.1016/j.pepi.2003.08.011.
    Tajima F, Grand S P. 1995. Evidence of high velocity anomalies in the transition zone associated with southern Kurile subduction zone[J]. Geophys Res Lett, 22(23): 3139-3142. doi: 10.1029/95GL03314.
    Tang Y C, Obayashi M, Niu F L, Grand S P, Chen Y S, Kawakatsu H, Tanaka S, Ning J Y, Ni J F. 2014. Changbai-shan volcanism in northeast China linked to subduction-induced mantle upwelling[J]. Nat Geosci, 7(6): 470-475. doi: 10.1038/ngeo2166.
    Tonegawa T, Hirahara K, Shibutani T. 2005. Detailed structure of the upper mantle discontinuities around the Japan subduction zone imaged by receiver function analyses[J]. Earth Planets Space, 57(1): 5-14. doi: 10.1186/bf03351801.
    Wang B S, Niu F L. 2010. A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China[J]. J Geophys Res, 115(B6): B06308. doi: 10.1029/2009JB006608.
    Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green’s functions[J]. Bull Seismol Soc Am, 89(3): 733-741. http://cn.bing.com/academic/profile?id=2338095465&encoded=0&v=paper_preview&mkt=zh-cn
    Wang T, Chen L. 2009. Distinct velocity variations around the base of the upper mantle beneath northeast Asia[J]. Phys Earth Planet Inter, 172(3): 241-256. doi: 10.1016/j.pepi.2008.09.021.
    Wang Y, Wen L X, Weidner D, He Y M. 2006. SH velocity and compositional models near the 660-km discontinuity beneath South America and northeast Asia[J]. J Geophys Res, 111(B7): B07305. doi: 10.1029/2005JB003849.
    Wang Z. 2014. Joint inversion of P-wave velocity and vP/vS ratio: Imaging the deep structure in NE Japan[J]. Appl Geophys, 11(2): 119-127. doi: 10.1007/s11770-014-0437-1.
    Weidner D J, Wang Y B. 1998. Chemical- and Clapeyron-induced buoyancy at the 660 km discontinuity[J]. J Geophys Res, 103(B4): 7431-7441. doi: 10.1029/97jb03511.
    Xia S H, Zhao D P, Qiu X L. 2008. Tomographic evidence for the subducting oceanic crust and forearc mantle serpentinization under Kyushu, Japan[J]. Tectonophysics, 449(1/2/3/4): 85-96. doi: 10.1016/j.tecto.2007.12.007.
    Zhang R Q, Wu Q J, Li Y H, Romanowicz B. 2012. Lateral variations in SH velocity structure of the transition zone beneath Korea and adjacent regions[J]. J Geophys Res, 117(B9): B09315. doi: 10.1029/2011jb008900.
    Zhao D P, Maruyama S, Omori S. 2007. Mantle dynamics of western Pacific and East Asia: Insight from seismic tomography and mineral physics[J]. Gondw Res, 11(1/2): 120-131. doi: 10.1016/j.gr.2006.06.006.
  • Cited by

    Periodical cited type(3)

    1. 苏慧,崔清辉,李国辉,尹迪,周元泽. 基于波形拟合的日本南部及琉球岛弧下方滞留板片的形态结构研究. 地震学报. 2025(01): 37-53 . 本站查看
    2. 崔冉,周元泽. 地震波三重震相在地幔转换区结构研究中的应用. 地震地磁观测与研究. 2024(05): 11-19 .
    3. 苏慧,魏荣强,周元泽,崔清辉,李国辉. 东北亚边缘地区地幔过渡带内滞留太平洋板片上界面的三重震相研究. 地球物理学报. 2023(06): 2431-2444 .

    Other cited types(4)

Catalog

    Article views (451) PDF downloads (26) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return