Wu LIJUNup, FENG RUIup, HUANG ZHIMINGup2. 1991: THE WAVE FIELD CONTINUATION FOR SEISMIC REFRACTION. Acta Seismologica Sinica, 13(1): 41-52.
Citation: Wu LIJUNup, FENG RUIup, HUANG ZHIMINGup2. 1991: THE WAVE FIELD CONTINUATION FOR SEISMIC REFRACTION. Acta Seismologica Sinica, 13(1): 41-52.

THE WAVE FIELD CONTINUATION FOR SEISMIC REFRACTION

More Information
  • Published Date: September 01, 2011
  • Based on wave equation a fundamentl formula for plane wave propagation is derived, the theoretical relationship of inverting wave velocity structure through the observational wave field is discussed in this paper. The observational wave field can be decomposed into the surface plane wave field by using -p transform. The maximum amplitude curve in the plane wave field can show stably the change tendency of wave velocity with depth in the Earth. This property can be used to restrict the solution space. By using the wave field continuation method more useful information from the observational wave field can be extracted and the inversion solution not only can be obtained simply and quickly, but also is stable and less influenced by the subjective factor. The wave field continuation is a fine inversion method.Theoretical analysis and numerical modelling are carried out in the study of wave field continuation. By applying homomorphic decovolution the signal-tonoise ratio is improved.Finaly a sonar refraction profile in the northern part of the South China Sea is interpreted and computed. It is found as a result that there is a velocity interface from 1.76 km/s to 2.21 km/s at the depth of 1.4km. The velocity gradients in the upper and lower layer are 0.54 kms-1/km and 0.63 kms-1/km respectively. A discussion of the characteristics of shallow sea structure in the view of tectonic movements is given.
  • [1] Clayton,R. W. and McMechan, G. A., 1981. lnversion of refraction data field continuation. Geophysics,46,860——868.

    [2] Carrion, P. M. Kuo, J. T.and Patton, W. A., 1984. Inversion of seismic data: accuracy and convergence of an iterative scheme based on acoustic imaging. Geophys. J. R. Astr. Sac 79, 425——437.

    [3] Milkcreit, B., Mooney, W. D. and Kohler, W. M., 1985. Inversion of setsmtc rafraction data in planar dipping structure. Geophys, J. R. Astr. Sac,82, 81——103.

    [4] Aki, K. and Richards, P. G., 1980. Quarztitative Srismulogy: Theury and Medthods, Vol. 1. 274.W.H. Freeman and rn,San Fraciscn.

    [5] 武利钧、冯锐,1989.地震层析成象的△——ξ变换.地震学报,2,170——180

    [6] Chspm,n, C. H 1978. A new method foer computing synthetic seisnograms,Grophys,J. R.astr.Soc.,54 481——518

    [7] Ulrvch, T. J,1971. Application of homomorpnic decovolotion to seismology. Geophyficr, 36, 4, 650——660.

    [8] Diebold, J. B. and Stoffa, P. L., 1981. The travcltime equation, tau——p mapping, and inversion of common midpoint data. Grophysics, 46, 3, 238——254.

    [9] 武利钧、冯锐 1986.走时反演中的τ法最优化.地震研究,9,659——673,

    [10] Bcssonova, E. N., Fishman, V. M,Ryaboyi,V. A. and Sirnikova, G. A., 1974. The rau merhod for inversion of traveltimes——I, Deep seismic sounding data. Geophys. J., 36,377——398

    [1] Clayton,R. W. and McMechan, G. A., 1981. lnversion of refraction data field continuation. Geophysics,46,860——868.

    [2] Carrion, P. M. Kuo, J. T.and Patton, W. A., 1984. Inversion of seismic data: accuracy and convergence of an iterative scheme based on acoustic imaging. Geophys. J. R. Astr. Sac 79, 425——437.

    [3] Milkcreit, B., Mooney, W. D. and Kohler, W. M., 1985. Inversion of setsmtc rafraction data in planar dipping structure. Geophys, J. R. Astr. Sac,82, 81——103.

    [4] Aki, K. and Richards, P. G., 1980. Quarztitative Srismulogy: Theury and Medthods, Vol. 1. 274.W.H. Freeman and rn,San Fraciscn.

    [5] 武利钧、冯锐,1989.地震层析成象的△——ξ变换.地震学报,2,170——180

    [6] Chspm,n, C. H 1978. A new method foer computing synthetic seisnograms,Grophys,J. R.astr.Soc.,54 481——518

    [7] Ulrvch, T. J,1971. Application of homomorpnic decovolotion to seismology. Geophyficr, 36, 4, 650——660.

    [8] Diebold, J. B. and Stoffa, P. L., 1981. The travcltime equation, tau——p mapping, and inversion of common midpoint data. Grophysics, 46, 3, 238——254.

    [9] 武利钧、冯锐 1986.走时反演中的τ法最优化.地震研究,9,659——673,

    [10] Bcssonova, E. N., Fishman, V. M,Ryaboyi,V. A. and Sirnikova, G. A., 1974. The rau merhod for inversion of traveltimes——I, Deep seismic sounding data. Geophys. J., 36,377——398

Catalog

    Article views (1278) PDF downloads (108) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return