Yan Wenhua, Zhang Yuansheng, Qin Manzhong, Liu Xuzhou, Guo Yingxia. 2016: Characteristics of ambient seismic noise of broadband seismic array in the southeastern Gansu region. Acta Seismologica Sinica, 38(5): 719-727.
Citation: Yan Wenhua, Zhang Yuansheng, Qin Manzhong, Liu Xuzhou, Guo Yingxia. 2016: Characteristics of ambient seismic noise of broadband seismic array in the southeastern Gansu region. Acta Seismologica Sinica, 38(5): 719-727.

Characteristics of ambient seismic noise of broadband seismic array in the southeastern Gansu region

More Information
  • Received Date: November 29, 2015
  • Revised Date: March 20, 2016
  • Published Date: August 31, 2016
  • Using the vertical component records of 150 broadband seismic stations from January to December 2010 in the southeastern Gansu region, this paper calculated the ambient noise cross-correlation functions between each station-pair and stacked them to obtain Rayleigh surface wave signals in the periods of 5-10 s and 10-20 s. And then the method of signal-to-noise ratio (SNR) and normalized background energy flow (NBEF) measurement are adopted to study the characteristics of ambient noise source in southeastern Gansu region based on the asymmetrical features of cross-correlation functions. The results show that the seasonal variations of ambient noise source for both periods of 5-10 s and 10-20 s have their respective azimuthal distribution of noise energy. The azimuth of ambient noise source in the period of 5-10 s is 170°-240° in summer, which means the energy of ambient noise source is mainly affected by the Indian Ocean, and it moves to 100°-150° in winter, which means the energy of ambient noise source is mainly affected by the North Pacific Ocean. In contrast, the characteristics of ambient noise source in the period of 10-20 s is more complex, because the azimuth of ambient noise source is controlled by several oceans. The energy of ambient noise source focuses on the azimuth of 170°-210° in summer, which means it is mainly affected by the Indian Ocean, then it moves to 90°-150° and 310°-355° in winter, which means it is mainly affected by the North Pacific Ocean and the North Atlantic Ocean. Because the ambient noise source of southeastern Gansu region has obvious seasonal variation in both periods of 5-10 s and 10-20 s, inhomogeneous ambient noise source should be taken into consideration when the method of ambient noise is used to study the seismic velocity structure in the region.
  • 房立华, 吴建平, 吕作勇. 2009. 华北地区基于噪声的瑞利面波群速度层析成像[J]. 地球物理学报, 52(3): 663-671. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200903010.htm
    Fang L H, Wu J P, Lü Z Y. 2009. Rayleigh wave group velocity tomography from ambient seismic noise in North China[J]. Chinese Journal of Geophysics, 52(3): 663-671 (in Chinese). doi: 10.1002/cjg2.v52.3
    房立华, 吴建平, 王未来, 王长在, 杨婷. 2013. 华北地区勒夫波噪声层析成像研究[J]. 地球物理学报, 56(7): 2268-2279. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307013.htm
    Fang L H, Wu J P, Wang W L, Wang C Z, Yang T. 2013. Love wave tomography from ambient seismic noise in North-China[J]. Chinese Journal of Geophysics, 56(7): 2268-2279 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307013.htm
    高见, 张元生, 郭飚, 刘旭宙. 2013. 甘东南流动台阵微震监测结果[J]. 地震工程学报, 35(1): 177-182. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301027.htm
    Gao J, Zhang Y S, Guo B, Liu X Z. 2013. Microearthquake location determined by portable seismic array data in southeast Gansu Province[J]. China Earthquake Engineering Journal, 35(1): 177-182 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201301027.htm
    李玲利, 王伟涛, 朱良保, 陈浩朋, 王清东, 缪鹏, 王俊. 2014. 从背景噪声提取瑞利面波频散曲线: 方法与应用实例[J]. 地震, 34(3): 108-116. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201403010.htm
    Li L L, Wang W T, Zhu L B, Chen H P, Wang Q D, Miao P, Wang J. 2014. Processing seismic ambient noise data to obtain reliable surface wave dispersion measurements[J]. Earthquake, 34(3): 108-116 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201403010.htm
    刘旭宙, 张元生, 李顺成. 2014. 流动地震观测台阵数据快速整合研究[J]. 地震学报, 36(4): 730-737. http://www.dzxb.org/stat/ShowHtml?ContentID=28999
    Liu X Z, Zhang Y S, Li S C. 2014. Data rapid integration of mobile seismic array[J]. Acta Seismologica Sinica, 36(4): 730-737 (in Chinese). http://www.dzxb.org/stat/ShowHtml?ContentID=28999
    刘志坤, 黄金莉. 2010. 利用背景噪声互相关研究汶川地震震源区地震波速度变化[J]. 地球物理学报, 53(4): 853-863. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201004011.htm
    Liu Z K, Huang J L. 2010. Temporal changes of seismic velocity around the Wenchuan earthquake fault zone from ambient seismic noise correlation[J]. Chinese Journal of Geophysics, 53(4): 853-863 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201004011.htm
    鲁来玉, 何正勤, 丁志峰, 王椿镛. 2014. 基于背景噪声研究云南地区面波速度非均匀性和方位各向异性[J]. 地球物理学报, 57(3): 822-836. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201403012.htm
    Lu L Y, He Z Q, Ding Z F, Wang C Y. 2014. Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise[J]. Chinese Journal of Geophysics, 57(3): 822-836 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201403012.htm
    马小军, 马禾青, 李军, 许晓庆, 曾宪伟, 罗国富. 2014. 青藏高原东北缘背景噪声特征分析[J]. 地震研究, 37(4): 607-613. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201404018.htm
    Ma X J, Ma H Q, Li J, Xu X Q, Zeng X W, Luo G F. 2014. Characteristic of ambient seismic noise of the northeastern margin of Tibetan Plateau[J]. Journal of Seismological Research, 37(4): 607-613 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201404018.htm
    齐诚, 陈棋福, 陈颙. 2007. 利用背景噪声进行地震成像的新方法[J]. 地球物理学进展, 22(3): 771-777. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200703016.htm
    Qi C, Chen Q F, Chen Y. 2007. A new method for seismic imaging from a ambient seismic noise[J]. Progress in Geophysics, 22(3): 771-777 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200703016.htm
    王伟涛, 倪四道, 王宝善. 2011a. 云南地区地脉动噪声特征分析研究[J]. 地震, 31(4): 58-67. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201104006.htm
    Wang W T, Ni S D, Wang B S. 2011a. Study on the characteristics of microseisms in the Yunnan region, China[J]. Earthquake, 31(4): 58-67 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201104006.htm
    王伟涛, 杨润海, 郑定昌, 倪四道, 王宝善. 2011b. 云南地区背景噪声互相关函数中体波信号来源初探[J]. 地震研究, 34(3): 350-357. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201103017.htm
    Wang W T, Yang R H, Zheng D C, Ni S D, Wang B S. 2011b. Study on the origin of the body wave extracted from ambient seismic noise cross-correlation function in Yunnan[J]. Journal of Seismological Research, 34(3): 350-357 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201103017.htm
    张辉, 王熠熙, 冯建刚. 2011. 甘东南地区地壳介质各向异性特征[J]. 西北地震学报, 33(2): 111-116. http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201102003.htm
    Zhang H, Wang Y X, Feng J G. 2011. Seismic anisotropy in the crust in southeastern area of Gansu Province[J]. Northwestern Seismological Journal, 33(2): 111-116 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201102003.htm
    Bensen G D, Ritzwoller M H, Barmin M P, Levshin A L, Lin F, Moschetti M P, Shapiro N M, Yang Y. 2007. Proces-sing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int, 169(3): 1239-1260. doi: 10.1111/gji.2007.169.issue-3
    Frontera T, Ugalde A, Olivera C, Jara J A, Goula X. 2010. Seismic ambient noise characterization of a new permanent broadband ocean bottom seismometer site offshore Catalonia (northeastern Iberian Peninsula)[J]. Seismol Res Lett, 81(5): 740-749. doi: 10.1785/gssrl.81.5.740
    Hasselmann K A. 1963. A statistical analysis of the generation of microseisms[J]. Rev Geophys, 1(2): 177-210. doi: 10.1029/RG001i002p00177
    Koper K D, de Foy B. 2008. Seasonal anisotropy in short-period seismic noise recorded in South Asia[J]. Bull Seismol Soc Am, 98(6): 3033-3045. doi: 10.1785/0120080082
    Larose E, Derode A, Campillo M, Fink M. 2004. Imaging from one-bit correlations of wideband diffuse wave fields[J]. J Appl Phys, 95(12): 8393-8399. doi: 10.1063/1.1739529
    Lin F C, Moschetti M P, Ritzwoller M H. 2008. Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps[J]. Geophys J Int, 173(1): 281-298. doi: 10.1111/gji.2008.173.issue-1
    Lobkis O I, Weaver R L. 2001. On the emergence of the Green’s function in the correlations of a diffuse field[J]. J Acoust Soc Am, 110(6): 3011-3017. doi: 10.1121/1.1417528
    Longuet-Higgins M S. 1950. A theory of the origin of microseisms[J]. Philos Trans R Soc London A, 243(857): 1-35. doi: 10.1098/rsta.1950.0012
    Malcolm A E, Scales J A, van Tiggelen B A. 2004. Extracting the Green function from diffuse, equipartitioned waves[J]. Phys Rev E, 70(2): 015601. doi: 10.1103/PhysRevE.70.015601.
    Pedersen H A, Krüger F. 2007. Influence of the seismic noise characteristics on noise correlations in the Baltic shield[J]. Geophys J Int, 168(1): 197-210. doi: 10.1111/gji.2007.168.issue-1
    Peterson J R. 1993. Observation and Modeling of Seismic Background Noise[R]. Albuquerque, New Mexico: US Geol Sur Tech Rept: 93-322.
    Rickett J, Claerbout J. 1999. Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir moni-toring[J]. Leading Edge, 18(8): 957-960. doi: 10.1190/1.1438420
    Roux P, Kuperman W A, the NPAL Group. 2004. Extracting coherent wave fronts from acoustic ambient noise in the ocean[J]. J Acoust Soc Am, 116(4): 1995-2003. doi: 10.1121/1.1797754
    Roux P, Sabra K G, Gerstoft P, Kuperman W A, Fehler M C. 2005. P-waves from cross-correlation of seismic noise[J]. Geophys Res Lett, 32(19): L19303. doi: 10.1029/2005GL023803.
    Sabra K G, Roux P, Kuperman W A. 2005. Arrival-time structure of the time-averaged ambient noise cross-correlation function in an oceanic waveguide[J]. J Acoust Soc Am, 117(1): 164-174. doi: 10.1121/1.1835507
    Shapiro N M, Campillo M, Stehly L, Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science, 307(5715): 1615-1618. doi: 10.1126/science.1108339
    Stehly L, Campillo M, Shapiro N M. 2006. A study of the seismic noise from its long-range correlation properties[J]. J Geophys Res, 111(B10): B10306. doi: 10.1029/2005JB004237
    Weaver R L. 2005. Information from seismic noise[J]. Science, 307(5715): 1568-1569. doi: 10.1126/science.1109834
    Weaver R L, Lobkis O I. 2001. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies[J]. Phys Rev Lett, 87(13): 134301. doi: 10.1103/PhysRevLett.87.134301
    Wessel P, Smith W H F. 1998. New, improved version of the generic mapping tools released[J]. Eos Trans AGU, 79(47): 579. doi: 10.1029/98EO00426.
    Yang Y J, Ritzwoller M H, Levshin A L, Shapiro N M. 2007. Ambient noise Rayleigh wave tomography across Europe[J]. Geophys J Int, 168(1): 259-274. doi: 10.1111/gji.2007.168.issue-1
    Yang Y J, Ritzwoller M H. 2008. Characteristics of ambient seismic noise as a source for surface wave tomography[J]. Geochem Geophys Geosyst, 9(2): Q02008. http://cn.bing.com/academic/profile?id=1583639331&encoded=0&v=paper_preview&mkt=zh-cn
  • Related Articles

  • Cited by

    Periodical cited type(6)

    1. 孙点峰,王亚红,秦满忠,邹锐,万文琦,王志栋. 水下节点地震仪在陆地主动源探测中的应用. 地震科学进展. 2023(12): 561-566 .
    2. 安全,韩晓明,刘甜甜,郭延杰,翟浩,尹战军. 西拉木伦断裂带东沿背景噪声特征分析. 地震工程学报. 2022(04): 936-944 .
    3. 段昊,安全,郭雷,王耀林. 锡林浩特地震台背景噪声特性. 地震地磁观测与研究. 2022(05): 94-99 .
    4. 安全,包莹,刘甜甜,郭延杰. 测震井下观测压制背景噪声特征分析. 大地测量与地球动力学. 2022(12): 1312-1316 .
    5. 安全,赵艳红,郭延杰,刘永梅. 内蒙古山洞台站背景噪声特征分析. 大地测量与地球动力学. 2021(12): 1312-1316 .
    6. Shaoxing Hui,Wenhua Yan,Yifei Xu,Liping Fan,Hongwu Feng. Phase velocity maps of Rayleigh waves in the Ordos block and adjacent regions. Earthquake Science. 2018(Z1): 234-241 .

    Other cited types(1)

Catalog

    Article views (568) PDF downloads (39) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return