Li Wen Liu Xia Duan Yubo Yao Jianhong Liu Jicheng Pan Hongping. 2012: Wavelet modulus maxima denoising of seismic signals based on combined wavelet entropy and correlation. Acta Seismologica Sinica, 34(6): 841-850.
Citation: Li Wen Liu Xia Duan Yubo Yao Jianhong Liu Jicheng Pan Hongping. 2012: Wavelet modulus maxima denoising of seismic signals based on combined wavelet entropy and correlation. Acta Seismologica Sinica, 34(6): 841-850.

Wavelet modulus maxima denoising of seismic signals based on combined wavelet entropy and correlation

More Information
  • Published Date: November 13, 2012
  • In wavelet modulus maxima denoising algorithms, high-frequency wavelet coefficients are all considered as noises, and the useful information in them is ignored, therefore, modulus maxima pickup points are wrongly selected and the calculated noise variances still contain useful information. To solve these problems, this paper proposed a wavelet modulus maxima denoising algorithm which combines wavelet entropy with correlation. The effective signal location is determined by correlation processing of high-frequency wavelet coefficients. The high-frequency wavelet coefficients on the maximum scale are divided into several small zones, and the interval wavelet entropy is calculated. With the mean value of high-frequency wavelet coefficients in the wavelet entropy maxima interval as noise variance, the threshold value of the maxima scale is calculated according to the formula presented by Donoho in 1995. By comparing locations of the maxima point obtained by comparison the threshold values with locations of the useful information obtained by correlation processing, the modulus maxima of the same position are retained and modulus maxima points of different positions caused by noises are eliminated. The modulus maxima of each level are searched with the Adhoc algorithm step by step and the denoised signals are reconstructed by alternating projection algorithm. This improved algorithm realized adaptive selection of threshold values and removal of wrongly selected modulus maxima pickup points. Our method and a conventional denoising method were both applied to simulation signal processing, and comparative analysis verified effectiveness of our improved method.
  • 陈德智, 唐磊, 盛剑霓, 王恒利. 1998. 由小波变换的模极大值快速重构信号[J]. 电子学报, 26(9): 82——85.

    段炜. 2008. 基于小波变换的探地雷达信号去噪方法研究[D]. 长沙: 中南大学: 43——54.

    姜弢, 刘庆普, 胡留军. 2002. 地震信号去噪的小波方法研究[J]. 哈尔滨工程大学学报, 23(4): 86——89.

    蒋鹏. 2004. 小波理论在信号去噪和数据压缩的应用研究[D]. 杭州: 浙江大学: 47——59.

    孔祥茜, 吴继伟, 岳继光. 2005. 地震信号小波变换的去噪方法[J]. 计算机辅助工程, 14(3): 52——56.

    李华. 2000. 小波理论分析及其在地震信号处理中的应用研究[D]. 成都: 成都理工学院: 43——52.

    陆基孟. 2005. 地震勘探原理下册[M]. 北京: 石油大学出版社: 312——328.

    潘洪屏. 2011. 基于小波分析技术的地震信号去噪方法研究[D]. 大庆: 东北石油大学: 38——40.

    孙丰荣, 翟广涛, 李艳玲, 刘泽, 张梅, 张运. 2005. 由小波变换模极大值重构信号的快速算法[J]. 小型微型计算机系统, 26(12): 2147——2149.

    孙延奎. 2005. 小波分析及其应用[M]. 北京: 机械工业出版社: 224——236.

    田金文, 高谦, 杜拥军. 2001. 基于小波变换模极大值的地震信号去噪处理方法[J]. 江汉石油学院学报, 23(1): 22——25.

    王秀明. 2007. 应用地球物理方法原理[M]. 北京: 石油工业出版社: 23——25.

    徐长发, 李国宽. 2004. 实用小波方法[M]. 武汉: 华中科技大学出版社: 107——119.

    姚胜利. 2007. 地震信号的小波去噪方法研究[D]. 长沙: 中南大学: 22——37.

    张荣标, 胡海燕, 冯友兵. 2007. 基于小波熵的微弱信号检测方法研究[J]. 仪器仪表学报, 28(11): 2078——2083.

    张媛玲. 2001. 小波分析在地震勘探资料处理中的应用[D]. 沈阳: 沈阳工业大学: 12——14, 34——43.

    周怀来. 2006. 基于小波变换的地震信号去噪方法研究与应用[D]. 成都: 成都理工大学: 1——7.

    朱晓明. 2007. 工程地震信号去噪技术研究[D]. 青岛: 中国海洋大学: 1——14.

    Alnashash H A, Paul J S. 2003. Wavelet entropy method for EEG analysis application to global brain injury[C]//IEEE EMBS Conference on Neural Engineering. Capri Island, Italy. 3: 348——351.

    Donoho D. 1995. De——noising by soft——thresholding [J]. IEEE Trans on IT, 3: 613——627.

    He Z Y, Cai Y M. 2004. A study of wavelet entropy theory and its application in power system[C]//IEEE International Conference on Intelligent Mechatronics and Automation. Chengdu, China. 8: 847——851.

    Hsung T C, Lun D P K. 1999. Denoising by singularity detection[J]. IEEE Transactions on Signal Processing, 47(11): 3139——3144.

    Mallat S G, Zhong S. 1992. Characterization of signals from multiscale edges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7): 710——732.

    Witkin A P. 1983. Scale space filtering[C]//Proceedings of the Eighth International Joint Conference on Artificial Intelligence. Karlsruhe, Germany: 1019——1022.

    Ykhlef F, Arezki M. 2004. A wavelet denoising method to improve detection with ultrasonic signal[C]//IEEE International Conference on Industrial Technology. Hammamet, Tunisia: 1422——1425.

    陈德智, 唐磊, 盛剑霓, 王恒利. 1998. 由小波变换的模极大值快速重构信号[J]. 电子学报, 26(9): 82——85.

    段炜. 2008. 基于小波变换的探地雷达信号去噪方法研究[D]. 长沙: 中南大学: 43——54.

    姜弢, 刘庆普, 胡留军. 2002. 地震信号去噪的小波方法研究[J]. 哈尔滨工程大学学报, 23(4): 86——89.

    蒋鹏. 2004. 小波理论在信号去噪和数据压缩的应用研究[D]. 杭州: 浙江大学: 47——59.

    孔祥茜, 吴继伟, 岳继光. 2005. 地震信号小波变换的去噪方法[J]. 计算机辅助工程, 14(3): 52——56.

    李华. 2000. 小波理论分析及其在地震信号处理中的应用研究[D]. 成都: 成都理工学院: 43——52.

    陆基孟. 2005. 地震勘探原理下册[M]. 北京: 石油大学出版社: 312——328.

    潘洪屏. 2011. 基于小波分析技术的地震信号去噪方法研究[D]. 大庆: 东北石油大学: 38——40.

    孙丰荣, 翟广涛, 李艳玲, 刘泽, 张梅, 张运. 2005. 由小波变换模极大值重构信号的快速算法[J]. 小型微型计算机系统, 26(12): 2147——2149.

    孙延奎. 2005. 小波分析及其应用[M]. 北京: 机械工业出版社: 224——236.

    田金文, 高谦, 杜拥军. 2001. 基于小波变换模极大值的地震信号去噪处理方法[J]. 江汉石油学院学报, 23(1): 22——25.

    王秀明. 2007. 应用地球物理方法原理[M]. 北京: 石油工业出版社: 23——25.

    徐长发, 李国宽. 2004. 实用小波方法[M]. 武汉: 华中科技大学出版社: 107——119.

    姚胜利. 2007. 地震信号的小波去噪方法研究[D]. 长沙: 中南大学: 22——37.

    张荣标, 胡海燕, 冯友兵. 2007. 基于小波熵的微弱信号检测方法研究[J]. 仪器仪表学报, 28(11): 2078——2083.

    张媛玲. 2001. 小波分析在地震勘探资料处理中的应用[D]. 沈阳: 沈阳工业大学: 12——14, 34——43.

    周怀来. 2006. 基于小波变换的地震信号去噪方法研究与应用[D]. 成都: 成都理工大学: 1——7.

    朱晓明. 2007. 工程地震信号去噪技术研究[D]. 青岛: 中国海洋大学: 1——14.

    Alnashash H A, Paul J S. 2003. Wavelet entropy method for EEG analysis application to global brain injury[C]//IEEE EMBS Conference on Neural Engineering. Capri Island, Italy. 3: 348——351.

    Donoho D. 1995. De——noising by soft——thresholding [J]. IEEE Trans on IT, 3: 613——627.

    He Z Y, Cai Y M. 2004. A study of wavelet entropy theory and its application in power system[C]//IEEE International Conference on Intelligent Mechatronics and Automation. Chengdu, China. 8: 847——851.

    Hsung T C, Lun D P K. 1999. Denoising by singularity detection[J]. IEEE Transactions on Signal Processing, 47(11): 3139——3144.

    Mallat S G, Zhong S. 1992. Characterization of signals from multiscale edges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(7): 710——732.

    Witkin A P. 1983. Scale space filtering[C]//Proceedings of the Eighth International Joint Conference on Artificial Intelligence. Karlsruhe, Germany: 1019——1022.

    Ykhlef F, Arezki M. 2004. A wavelet denoising method to improve detection with ultrasonic signal[C]//IEEE International Conference on Industrial Technology. Hammamet, Tunisia: 1422——1425.

  • Related Articles

Catalog

    Article views (1514) PDF downloads (230) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return