Hu Caibo, Cai Yongen. 2016: A possible mechanism of Omori-Utsu’s law through an example of the great Tangshan earthquake. Acta Seismologica Sinica, 38(4): 580-589.
Citation: Hu Caibo, Cai Yongen. 2016: A possible mechanism of Omori-Utsu’s law through an example of the great Tangshan earthquake. Acta Seismologica Sinica, 38(4): 580-589.

A possible mechanism of Omori-Utsu’s law through an example of the great Tangshan earthquake

More Information
  • Received Date: May 08, 2016
  • Accepted Date: June 19, 2016
  • Published Date: June 30, 2016
  • This paper proposes a conceptual model of earthquake source body with Kelvin viscoelastic property to investigate the physical mechanism of Omori-Utsu’s law, supposing that tectonic stress field after main shock does not change with time and equivalent viscosity in the aftershock region is much lower than that of its outside in the period of total aftershock activity. This model can simulate aftershock sequence induced by post-seismic creep and stress readjustment, and the whole process including creep stopping, materials recovering to its elastic state, and faulting turning to stick state for next earthquake. Finite element method is used to calculate stress field evolution caused by a main shock and its aftershocks in the model with heterogeneous material properties. Further- more, the model and the method are used to simulate decay of the aftershock frequency of the 1976 MS7.8 Tangshan earthquake. The results show that the mechanism of Omori-Utsu’s law may be attributed to the stress changes caused by the creep of the fault and earthquake source body, which implies that aftershock frequency depends on the creep rate and decay time of the aftershocks is controlled by the equivalent viscosity. The lager the viscosity is, the longer the creep time or the aftershocks last.
  • 蔡永恩, 何涛, 王仁. 1999. 1976年唐山地震震源动力过程的数值模拟[J]. 地震学报, 21(5): 469-477. http://www.dzxb.org/Magazine/Show?id=27416

    Cai Y E, He T, Wang R. 1999. Numerical simulation of dynamic process of the 1976 Tangshan earthquake[J]. Acta Seismologica Sinica, 21(5): 469-477 (in Chinese). http://www.dzxb.org/Magazine/Show?id=27416
    杨挺青. 1990. 粘弹性力学[M]. 武汉: 华中理工大学出版社: 24-28.

    Yang T Q. 1990. Mechanics of Viscoelasticity[M]. Wuhan: Central China University of Science and Technology Press: 24-28 (in Chinese).
    Audet P, Bostock M G, Christensen N I, Peacock S M. 2009. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing[J]. Nature, 457(7225): 76-78. doi: 10.1038/nature07650.
    Båth M. 1965. Lateral inhomogeneities of the upper mantle[J]. Tectonophysics, 2(6): 483-514. doi: 10.1016/0040-1951(65)90003-X
    Bürgmann R, Dresen G. 2008. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations[J]. Annu Rev Earth Planet Sci, 36: 531-567. doi: 10.1146/annurev.earth.36.031207.124326
    Caine J S, Forster C B. 1999. Fault zone architecture and fluid flow: Insights from field data and numerical modeling[G]//Faults and Subsurface Fluid Flow in the Shallow Crust. Washington DC: American Geophysical Union, 113: 101-127. http://geology.usgs.gov/postdoc/opps/2016/S18%20Glen.htm
    Chang W L, Smith R B, Puskas C M. 2013. Effects of lithospheric viscoelastic relaxation on the contemporary deformation following the 1959 MW7.3 Hebgen Lake, Montana, earthquake and other areas of the intermountain seismic belt[J]. Geochem Geophys Geosyst, 14(1): 1-17. doi: 10.1029/2012GC004424.
    Chester F M, Evans J P, Biegel R L. 1993. Internal structure and weakening mechanisms of the San Andreas fault[J]. J Geophys Res, 98(B1): 771-786. doi: 10.1029/92JB01866
    Deng J, Gurnis M, Kanamori H, Hauksson E. 1998. Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake[J]. Science, 282(5394): 1689-1692. doi: 10.1126/science.282.5394.1689
    Dieterich J H. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. J Geophys Res, 99(B2): 2601-2618. doi: 10.1029/93JB02581
    Faulkner D R, Mitchell T M, Healy D, Heap M J. 2006. Slip on ‘weak’ faults by the rotation of regional stress in the fracture damage zone[J]. Nature, 444(7121): 922-925. doi: 10.1038/nature05353.
    Flesch L M, Holt W E, Haines A J, Shentu B M. 2000. Dynamics of the Pacific-North American Plate boundary in the western United States[J]. Science, 287(5454): 834-836. doi: 10.1126/science.287.5454.834.
    Freed A M, Lin J. 1998. Time-dependent changes in failure stress following thrust earthquakes[J]. J Geophys Res, 103(B10): 24393-24409. doi: 10.1029/98JB01764
    Freed A M, Lin J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer[J]. Nature, 411(6834): 180-183. doi: 10.1038/35075548
    Goddard J V, Evans J P. 1995. Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, USA[J]. J Struct Geol, 17(4): 533-547. doi: 10.1016/0191-8141(94)00068-B
    Goodman R E. 1989. Introduction to Rock Mechanics[M]. 2nd Edition. New York: John Wiley & Sons Inc: 19-53.
    Gudmundsson A. 2004. Effects of Young’s modulus on fault displacement[J]. Compt Rend Geosci,336(1): 85-92. doi: 10.1016/j.crte.2003.09.018
    Gutenberg B, Richter C F. 1954. Seismicity of the Earth and Associated Phenomena[M]. 2nd Edition. Princeton, NJ: Princeton University Press: 17-19.
    Hu C B, Zhou Y J, Cai Y E. 2009a. A new finite element model in studying earthquake triggering and continuous evolution of stress field[J]. Science China Earth Science, 52(7): 994-1004. doi: 10.1007/s11430-009-0082-3
    Hu C B, Zhou Y J, Cai Y E, Wang C Y. 2009b. Study of earthquake triggering in a heterogeneous crust using a new finite element model[J]. Seismol Res Lett, 80(5): 795-803. http://cn.bing.com/academic/profile?id=2099063903&encoded=0&v=paper_preview&mkt=zh-cn
    Hu C B, Cai Y E, Wang Z M. 2012. Effects of large historical earthquakes, viscous relaxation, and tectonic loading on the 2008 Wenchuan earthquake[J]. J Geophys Res, 117: B06410. doi: 10.1029/2011JB009046.
    Hu C B, Cai Y E, Liu M, Wang Z M. 2013. Aftershocks due to pro perty variations in the fault zone: A mechanical model[J]. Tectonophysics, 588: 179-188. doi: 10.1016/j.tecto.2012.12.013.
    Hu Y, Wang K, He J, Klotz J, Khazaradze G. 2004. Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake[J]. J Geophys Res, 109(B12): B12403. doi: 10.1029/2004JB003163
    Li Q S, Liu M. 2006. Geometrical impact of the San Andreas fault on stress and seismicity in California[J]. Geophys Res Lett, 33(8): L08302. doi: 10.1029/2005GL025661.
    Li Q S, Liu M, Zhang H. 2009. A 3-D viscoelastoplastic model for simulating long-term slip on non-planar faults[J]. Geophys J Int, 176(1): 293-306. doi: 10.1111/gji.2008.176.issue-1
    Li Y G, Vidale J E, Day S M, Oglesby D D, The SCEC Field Working Team. 2002. Study of the 1999 M7.1 Hector Mine, California, earthquake fault plane by trapped waves[J]. Bull Seismol Soc Am, 92(4): 1318-1332.
    Marsan D. 2006. Can coseismic stress variability suppress seismicity shadows? Insight from a rate-and-state friction model[J]. J Geophys Res, 111(B6): B06305. doi: 10.1029/2005JB004060.
    Masterlark T. 2003. Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions[J]. J Geophys Res, 108(B11): 2540. doi: 10.1029/2002JB002296.
    Ohnaka M. 2000. A physical scaling relation between the size of an earthquake and its nucleation zone size[J]. Pure Appl Geophys, 157(11): 2259-2282. doi: 10.1007/PL00001084
    Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am, 92(2): 1018-1040. http://cn.bing.com/academic/profile?id=2130014760&encoded=0&v=paper_preview&mkt=zh-cn
    Omori F. 1894. On the aftershocks of earthquakes[J]. J Coll Sci Imper Univ Tokyo, 7: 111-120.
    Richter C F. 1958. Elementary Seismology[M]. San Francisco: W H Freeman and Company: 69.
    Saucier F, Humphreys E, Weldon II R. 1992. Stress near geometrically complex strike-slip faults: Application to the San Andreas fault at Cajon Pass, southern California[J]. J Geophys Res, 97(B4 ): 5081-5094. doi: 10.1029/91JB02644
    Savage J C, Burford R O. 1973. Geodetic determination of relative platemotion in central California[J]. J Geophys Res, 78(5): 832-845. doi: 10.1029/JB078i005p00832
    Savage J C, Svarc J L.1997. Postseismic deformation associated with the 1992 MW7.3 Landers earhquake, southern California[J]. J Geophys Res, 102(B4): 7565-7577. http://cn.bing.com/academic/profile?id=2164476182&encoded=0&v=paper_preview&mkt=zh-cn
    Scholz C H. 2002. The Mechanics of Earthquakes and Faulting[M]. 2nd Edition. Cambridge: Cambridge University Press: 136-155.
    Schulz S E, Evans J P. 2000. Mesoscopic structure of the Punchbowl fault, southern California and the geologic and geophysical structure of active strike-slip faults[J]. J Struct Geol, 22(7): 913-930. doi: 10.1016/S0191-8141(00)00019-5
    Stein S, Liu M. 2009. Long aftershock sequences within continents and implications for earthquake hazard assessment[J]. Nature, 462(7269): 87-89. doi: 10.1038/nature08502.
    Thatcher W, Pollitz F F. 2008. Temporal evolution of continental lithospheric strength in actively deforming regions[J]. GSA Today, 18(4/5): 4-11. doi: 10.1130/GSAT01804-5A.1.
    Utsu T. 1961. A statistical study on the occurrence of aftershocks[J]. Geophys Magaz, 30: 521-605. http://cn.bing.com/academic/profile?id=1522985695&encoded=0&v=paper_preview&mkt=zh-cn
    Yamaguchi T, Morishita M, DoiM, Hori T, Sakaguchi H, Ampuero J P. 2011. Gutenberg-Richter’s law in sliding friction of gels[J]. J Geophys Res, 116(B12): B12306. doi: 10.1029/2011JB008415.
    Zhao D P, Kanamori H, Negishi H, Wiens D. 1996. Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter?[J]. Science, 274(5294): 1891-1894. doi: 10.1126/science.274.5294.1891
    Zhu S B, Cai Y E. 2006. Inversion of viscous properties of crust and mantle from the GPS temporal series measurements[J]. Chinese Journal of Geophys, 49(3): 679-687. doi: 10.1002/cjg2.v49.3
    Zhu S B, Zhang P Z. 2010. Numeric modeling of the strain accumulation and release of the 2008 Wenchuan, Sichuan, China, earthquake[J]. Bull Seismol Soc Am, 100(5B): 2825-2839. doi: 10.1785/0120090351
    Zhu S B, Zhang P Z. 2013. FEM simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan earthquake[J]. Tectonophysics, 584: 64-80. doi: 10.1016/j.tecto.2012.06.024
  • Related Articles

Catalog

    Article views (532) PDF downloads (43) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return